47 research outputs found

    Renormalization-group investigation of a superconducting U(r)U(r)-phase transition using five loops calculations

    Get PDF
    We have studied a Fermi system with attractive U(r)U(r)-symmetric interaction at the finite temperatures by the quantum field renormalization group (RG) method. The RG functions have been calculated in the framework of dimensional regularization and minimal subtraction scheme up to five loops. It has been found that for r≥4r\geq 4 the RG flux leaves the system's stability region -- the system undergoes a first order phase transition. To estimate the temperature of the transition to superconducting or superfluid phase the RG analysis for composite operators has been performed using three-loops approximation. As the result this analysis shows that for 3D3D systems estimated phase transition temperature is higher then well known theoretical estimations based on continuous phase transition formalism

    Kraichnan model of passive scalar advection

    Full text link
    A simple model of a passive scalar quantity advected by a Gaussian non-solenoidal ("compressible") velocity field is considered. Large order asymptotes of quantum-field expansions are investigated by instanton approach. The existence of finite convergence radius of the series is proved, a position and a type of the corresponding singularity of the series in the regularization parameter are determined. Anomalous exponents of the main contributions to the structural functions are resummed using new information about the series convergence and two known orders of the expansion.Comment: 21 page

    Renormalization Group in Non-Relativistic Quantum Statistics

    Get PDF
    Dynamic behaviour of a boson gas near the condensation transition in the symmetric phase is analyzed with the use of an effective large-scale model derived from time-dependent Green functions at finite temperature. A renormalization-group analysis shows that the scaling exponents of critical dynamics of the effective multi-charge model coincide with those of the standard model A. The departure of this result from the descrip tion of the superfluid transition by either model E or F of the standard phenomenological stochastic models is corroborated by the analysis of a generalization of model F, which takes into account the effect of compressible fluid velocity. It is also shown that, con trary to the single-charge model A, there are several correction exponents in the effective model, which are calculated at the leading order of the = 4 − d expansion

    Effective large-scale model of boson gas from microscopic theory

    Get PDF
    An effective large-scale model of interacting boson gas at low temperatures is constructed from first principles. The starting point is the generating function of time-dependent Green functions at finite temperature. The perturbation expansion is worked out for the generic case of finite time interval and grand-canonical density operator with the use of the S-matrix functional for the generating function. Apparent infrared divergences of the perturbation expansion are pointed out. Regularization via attenuation of propagators is proposed and the relation to physical dissipation is studied. Problems of functional-integral representation of Green functions are analyzed. The proposed large-scale model is explicitly renormalized at the leading order

    Renormalization Group in Non-Relativistic Quantum Statistics

    Get PDF
    Dynamic behaviour of a boson gas near the condensation transition in the symmetric phase is analyzed with the use of an effective large-scale model derived from time-dependent Green functions at finite temperature. A renormalization-group analysis shows that the scaling exponents of critical dynamics of the effective multi-charge model coincide with those of the standard model A. The departure of this result from the description of the superfluid transition by either model E or F of the standard phenomenological stochastic models is corroborated by the analysis of a generalization of model F, which takes into account the effect of compressible fluid velocity. It is also shown that, contrary to the single-charge model A, there are several correction exponents in the effective model, which are calculated at the leading order of the ɛ= 4 − d expansion
    corecore