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Abstract

We have studied a Fermi system with attractive U(r)-symmetric interaction at the finite temperatures
by the quantum field renormalization group (RG) method. The RG functions have been calculated in the
framework of dimensional regularization and minimal subtraction scheme up to five loops. It has been
found that for » > 4 the RG flux leaves the system’s stability region — the system undergoes a first order
phase transition. To estimate the temperature of the transition to superconducting or superfluid phase the
RG analysis for composite operators has been performed using three-loops approximation. The result of
this analysis shows that for 3D systems estimated phase transition temperature is higher then well known
theoretical estimations based on continuous phase transition formalism.
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0. Introduction

The investigation of quantum Fermi systems and the phase transitions in these systems are the
problems of permanent interest. To describe the quantum equilibrium Fermi system we use the
temperature Green functions formalism, quantum field theory methods and the renormalization
group approach. The analysis is based on the microscopic model with local attractive interaction
of the “density—density” type [1-3]. The model’s field action has the form

S, =i _A_ _& Tost 1
v wa(t m 1ALV zwawydﬁ/l/fav (1)

where Y, w; describe the fermion fields at the finite temperature T, these fields are complex-
conjugate elements of the Grassmann algebra and @ =1, ..., r, where r is the number of spin
degrees of freedom, A is Laplace operator; m is a mass of the particles; w is the system’s chem-
ical potential; A = 4m|ag|/m is positive coupling constant and ay is the scattering amplitude for
interparticle 3 D-scattering; ¢ is the “imaginary” time and ¢ € [0, 8 = 1/T]. All the necessary
integrations and summations in formula (1) and similar expressions below are implied. It is also
necessary to impose the antiperiodic boundary conditions with respect to the “imaginary” time
on the fermion fields.

Ve (,0) = —Yu(p, B),  VI(P,0)=—vl(p, ). )

In the r = 2 case, this action (1) corresponds to the Bardeen—Cooper—Schrieffer theory and
a =1, | are the two possible spin projections. The theory describes low temperature supercon-
ductivity in electron systems. We will consider the case of arbitrary even values r. It can be
corresponded to the systems of ultra-cold atoms with high spins: 3/2,5/2,...,9/2, investigated
recently [4—11] or with the electrons in a solid body which have an additional sublattice index,
or layer index and/or an index correspondent to a degeneration of a zone structure. The modern
example of such solid body is graphene [12], where electrons have two additional indexes con-
nected both with the sublattices existence and the zone structure degeneration. The main part of
our analysis is applied to the model of graphene with the density—density interaction. But for the
graphene description the free-electron Hamiltonian in (1) has to be replaced to Dirac’s one and
the calculations in the Sec. 4 have to be repeated.

Usually in the system under consideration the phase transition temperature is determined by
the appearance of the anomalous solution of the Dyson equation [1], and the order parameter of
the superconducting phase transition is given by means of the composite operators <1pa 1/f),> and

<1//(1' w; > To investigate this model using renormalization group method, the action is transformed
by introducing the new boson fields yx, XT [14,15]. The action of the form
Spox = WO+ )V + o 00T = 2Ky ) = SVl ¥ 3)
Vox = Vo lor T Ep)Vu 0 rxx ) aXayVy ) aXayVy

was considered, where gp = p?/2m) — .

It can be easily proven that the integration exp(—Sy, ) over the fields y, x" leads to
exp(—Sy ). The new fields are complex skew-symmetric matrices because the fields v, v are
Grassmann variables. The Schwinger equations

(Xay +2P3w) =0,
<Xyot - )‘I/fal/fﬂ =0.

show that the x, x T determine the order parameter of the phase transition.
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The integration of exp(—Sy, ,) over the fermion fields , ¥ leads to the new action for the
boson fields x, x*

1 —x! —iwy — 5 — 1t
S, =—tr —trln S 2m , 4

= gymax! (—ia)s+%+u —x @
where w; = T (2s 4+ 1) are Matsubara frequencies, s € Z. Using the Taylor expansions for
In(1 +...) we can rewrite the action as

where wave lines denote the field x, x ', the plain lines denote free wa propagators Cross
corresponds to T, x T fields.

To obtain the effective action in the infra red (IR) region we have to present (5) in the form
of a Ginzburg—Landau functional by expanding all diagrams in the external momenta p and
frequencies. Then x', x fields can be considered as f-independent. As a result the effective
action has the form

~ 201 ; 202
Sy =t cop® + F)x + S o G + £ o ). (6)

The term with gp; coupling constant has been included to obtain the multiplicatively renormal-
ized theory. The parameters of the action co and go are positive and can be calculated from the
expressions

-~ dPk
=0, T
801 gn=28 Z/ 0P (@2 +82)2

~ dPk
0 =___ Z/(znw "

B2 f d’k !
=——T9d 8
€0 2" P ; Q2m)P (iws + ex) (—iws + exyp) 0’ ()

where D is dimension of space. The integration over k is performed in a narrow neighborhood
of the Fermi surface |ex — | < §. The parameter § can be similar to Debye frequency wp for
the system of electrons in the solids or similar to Fermi energy er for ultra cold atom systems.
For such systems 6 = (2/e)7/38F ~ 0.49¢p [13].

The IR behavior of the model (6) was studied in [14,15]. The renormalization group (RG)
investigation in the framework of ¢ =4 — D expansion in one-loop approximation [14] and
then in three-loop approximation [15] establishes the absence of IR-stable fixed points for even
values of r > 4. It was found that the stability criterion for action (6) (the condition for positive
definiteness of an interaction) can be formulated as the inequality

g2 +rg1>0, (€))

for go > 0.
Moreover, solutions of the RG equations for the invariant charges in one-loop approximation
[14] show that the system loses the stability before the continuous phase transition occurs. It
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was supposed, that a first-order phase transition takes place here and this phase transition can be
considered as one of the possible reasons of high temperature superconductivity.

Then the similar behavior was confirmed in [15] in the three-loop RG analysis of the 3D
and 2D models. But it was found that the three-loop approximation is not sufficient to ensure
an accurate calculation of the phase transition temperature. Therefore we have to develop our
analysis up to five-loop calculations, which is the maximal order available now in the framework
of e-expansion [19].

In Sec. 1 we describe the five-loop RG analysis of the model investigated with r > 4. Accord-
ing to [14] there is no IR stable fixed point in the framework of ¢ expansion. Thus, instead of
seeking fixed points of the RG equation we restrict ourselves to the analysis of the phase trajec-
tories. It was indicated in [14] that the equations for the invariant charges can be constructed in
the e-expansion form.

To analyze the phase portrait of these equations in the physical space dimensions (¢ = 1,
& = 2) we must resum the terms calculated using, for instance, the Borel resummation technique.
Such a resummation requires knowing the higher orders asymptotics (HOA) of the ¢ expansion.
The HOA of the considered model was determined in [15] using methods of the instanton anal-
ysis [17]. The analysis and the results obtained are described briefly in Sec. 2. It is interesting to
note that we have found several instantons with different matrix structures. These instantons are
essential in a Borel resumming at different values of the charges g1, g».

In Sec. 3 we resum and solve numerically the RG equations for the invariant charges. It is
confirmed that the invariant charges in the 3D model cross the boundary (9) of the stability
domain of the action (6). As for the 2D model, it is found that five-loop approximation is not
sufficient yet for the accurate description of the phase transition type. Our results show that the
phase transition type depends on the initial value of the coupling constant g»o.

In Sec. 4 the first order phase transition is studied in 3D and 2D model to find the real phase
transition temperature. The additional terms (~ x©) are introduced in the action (6). These terms
are IR irrelevant for the critical behavior, but are relevant for the first order phase transition
description. They are renormalized as composite operators in three-loop approximation. Their
contributions to the state equation are Borel resummed and the phase transition temperature is
estimated.

1. Renormalization group analysis
The renormalized action of the considered model is given by the expression [14]
T 81 2
Sg = Z)2< trx' (—A)x + Z, Z)z( iy x + Z,, Z; M‘?Z (trXXT)
+ 24, 7 Mﬁ%trxx*xxf. (10)
This expression is obtained by the multiplicative renormalization

80j = &M Zy, Xx— XZy, T0—>TZ, (11)

where the parameter M is a so-called renormalization mass; g1, g» are dimensionless renormal-
ized coupling constants, index zero denotes bare parameters. In this paper we use the dimensional
regularization, the e-expansion and the minimal subtraction scheme (MS-scheme) [16]. The bare
parameters go; and 1o are associated with the microscopic parameters (7), (8) by the relations

80j = 80j/cg. T0=To/co and x — x/\/<o.
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Fig. 1. Tensor structures of the vertices and propagator: vertex I corresponds to g1, vertex II corresponds to g», and vertex
III corresponds to the propagator.

Let us introduce the basic elements of the Feynman diagrammatic techniques for the model.
In the momentum representation the free propagator has the form
o J1i2 o 1
J1J2 __ 1 J1J2 S U S U,
ivip — k2 + 10 and Wi1i2 ZE(‘Slmﬁmz 5!1/25l2/1)v
where §;; is Kronecker symbol; k is the momentum or the wave vector (A = 1). The tensor

Wij1 1,; ? is antisymmetric with respect to the transpositions of its indexes i; <> i and j| <> jo,
and symmetric with respect to the transposition of the pairs (i1, i2) <> (j1, j2). One can write the
tensor structures for the vertices g1 and g, too, but we give only their graphical representation
(Fig. 1), the vertices antisymmetrization is implied.

In MS-scheme all renormalization constants have the form of the poles in ¢
z! 1
Ze=1+—+0 2] €=(gj,T,X)
e €

where Z g (g1, 82) denotes the residue at the simple pole in ¢ for the corresponding renormaliza-

tion constant. Let us remark that the interaction (tr XX T)z must be included for the multiplicative
renormalizability of the theory. It is easy to verify that the corresponding counterterms appear
due to the renormalization of the theory starting with the simplest one-loop diagram.

The RG-functions (the coefficients of the RG equation [16]) are defined by the relations

/ng =5MZg,-v )/e=5M1nZg, (12)

where Dy is the differential operator Mdy at fixed bare parameters, fg; are beta-functions
of the charges g;, and the functions y, are anomalous dimensions for the parameters e. In the
MS-scheme the RG-functions are connected with the renormalization constants by the following
expressions [16]

Be, =—8j(e+7g), Ve=—8kZ,. (13)

Program “FORM” [18] was used for the tensor structure calculations of the graphs. Tensor struc-
ture of the graph can be factorized, and the rest of the diagram is equivalent to diagrams of the
scalar ®* model, the values for these diagrams are taken from well known five loop calculations
of the O (n)-symmetric ®* model [19,20].

Finally, in the five-loop approximation (about 120000 diagrams), the RG-functions of the
theory were calculated. The rescale of the charges g; — g;/ 1672 was used. Results of our calcu-
lations were controlled for r =2, r = 3. In these cases the model (10) is equivalent to the O(2)-
and O (6)-®* models with vector order parameter, respectively.
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The RG equation leads to the known equations for the invariant coupling constants

ngizz'i%, g,-|§=0=gl-, where ";‘Eln#. (14)
The infrared (IR) regime £ — —oo is usually connected with fixed points (g7, g5) that are de-
termined by the conditions By, (g7, g5) = 0 for all indices i. The fixed point is IR-stable, if the
matrix w;j = dg; B, (87, &5) is positively defined. However, in the one-loop approximation [14]
it was found, that these points do not exist for r > 4. There is the IR-stable fixed point in the
model at » = 2, this point describes the critical behavior of the superconducting phase transition
in systems with 1/2-spin fermions. Also, the model (10) has the IR-stable fixed point at r = 3.
We will not try to determine the possible fixed point in the five-loops approximation of the model
considered, instead of this trajectories of the invariant charges will be studied in the next sections.

2. Instanton analysis

Consider the equations (14) with the g-functions (49), (50) (see Appendix). After the scaling
of the charges g; and the dynamical variable of the RG equation & as g; — eg; and £ — &£ /¢, we
get eq. (14) in the form

K
degi=—gi+y BN (.. i=12
N=0
8ile—o = &i- (15)

Explicit expressions of the BIKN) (g1, &2) can be obtained from (49), (50). In our case K = 4 (five-
loop approximation). Equations (15) can be solved in the form of e-expansion with the formally
small parameter ¢. Similar to [14] we will consider numerical solution of the equations (15). As
usual, the e-expansion in the right hand side of equations (15) is an asymptotic expansion with
zero radius of convergence. Therefore the equations (15) must be resummed to obtain results at
physical points ¢ = 1 or ¢ = 2. The resummation process requires knowledge about the asymp-
totic behavior of Bl.(N)(gl , 82) at N — o0o. Such an asymptotic behavior is called a higher-order
asymptotic (HOA) and was investigated in [15] in the model considered.

Let us recall the main details of the analysis [15]. The investigation of the asymptotic behavior
of higher-order perturbation corrections proposed in [17] is based on the saddle-point expansion
of the path integral (instanton approach). Calculation method for the HOA of renormalization
constants in MS scheme developed in [22,21] was used.

Partially renormalized Green functions, where subtractions of all the divergences in subgraphs
up to order N — 1 are supposed, were considered. The coefficients G(leg) of the expansion in the
parameter ¢ of the 2k-point Green function

sz(&m,--.,mk)=W71/DXDXTX(xl)X(xz)?---X(X2k—1)X(X2k)T67SR,

W:/DXDXTe—SR (16)

can be calculated in high orders (N — o0) by the saddle-point method in the integral represen-
tation [17]

N
G (et ) =

(=N 7§ deGoy(e, x1, ..., X2%) a7

2mi (—g)N+1 ’
¥
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where y is a closed contour encircling the origin in the complex plane of €. As usual [17],
we will find the HOA at t =0 and D = 4. After the rescaling of the parameters g; — g;/N,
x = ~Nx, xT = /Ny the variational equations for functional Sk + In(—¢) with respect to
the field variables and ¢ take the form

&81 €82
—Ax+ X tryx’ + TXXTX =0,

€81 £82
—AXT+7XTUXXT+TXTXXT=O,
e A2 e P
/dx{%(trxx‘) —i—%trxx‘xx‘}:—l. (18)

Similar to [17], the counterterms Z, — 1 in the action (10) are irrelevant for the calculation of
the stationary points. For matrix fields yx, )(T we can assume, without loss of generality, the
block-diagonal Pfaff’s form consisting of p =r/2 blocks

x = diag(sio, ..., 5,0), XTz—diag(sTa,...,s;;a), a=<(1) _01>, (19)

with some complex functions s;(x). Any skew-symmetric matrix can be reduced to this form by
some unitary transformations U (r). The equations (18) and (19) yield the system of equations
for s (x)

p
€82
850 + 81 ) k(05 (0 + 5 [si (015 (%) = 0. (20)
k=1
We seek s (x) in the form
a y~!

— - eC, 21
x=xo2+y2 b

5i(x) =
similar to solutions of the variational equation for the scalar ®* model. Functions s; (x) depend
on xg and y-arbitrary parameters reflecting the translation and dilatation invariance of the theory.
Then the Faddeev—Popov method was used. The unit decomposition was inserted in the integrand
(17) similar to [17]. This decomposition contains § functions which fix xg = 0, y, the complex
phases and the Pfaff’s form for the solutions of the (18). It is well known that this approach gave
us an opportunity to eliminate the zero-modes problem [17] and it is essential for the calcula-
tion of the amplitudes of the Green function’s HOA. But these amplitudes do not contribute to
the resummation procedure described below. The only essential contribution from the unit de-
composition is the exponent of N which can be simply determined by the knowledge about the
number of zero-modes. For this reason we omit the rather cuambersome explicit expressions for
the unit decomposition used. Substituting (21) in (20), we get the system of algebraic equations
for constants «;

P
€82
Bai +eg1 ) lewlPei + —=lati [Pt =0. (22)
2
k=1
One can see that the stationary solutions may containm =0, ..., p — 1 zero blocks with |¢;| =0

andn = p, ..., 1 blocks with |a;|> = —16/(2neg| + €g»), and n +m = p.
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Combining the instanton solutions (21), the Pfaff’s form (19) and the third equation (18), we
get stationary point in & parameter as

4n 1
3 2ng1+ g

Then one can obtain the HOA of four-point Green functions expansions. The problem of con-
nections between HOA of Green functions and HOA of renormalization constants in MS scheme
is rather difficult, but it was discussed in [22,23]. Here we will use the result obtained without
cumbersome explanations. Let us note that we are interested in the HOA of the renormalization
constants Zg;, namely HOA of the first(simple) pole in Ne. The main terms of the latter are
practically the same as the HOA of the four-point Green function obtained from (17) using (23).
Thus (23) determines the (—a)" term in the expression below, but the by according to [22,23]
is dependent on the zero-modes number only. Then using (13), the beta-functions HOA can be
obtained in the form

ﬁi(N)(gl,gz) = const; NIN"» (—a)V <1 + 0 (N_l)) , (24)

eg(n) =— 23)

where const; — some constants not essential for future analysis, b, = (r2=2r+n+11)/2 and
a = max|a(n)|, a(n) = —1/eyx(n). One can see from (23), that a(n) depends on values of g;,
n

therefore the largest of all a(n) gives the largest contribution to the HOA. Thus the perturbation
series in the parameter ¢ have zero radius of convergence in the theory with the action (10). For
this reason, it is necessary to use some procedures of resummation e.g. the Borel method.

3. Solution of the RG equations
3.1. Resummation of the RG equations

Let us recall the basic expressions for the Borel resummation [25]. We assume that there is a
function Q(e) defined as a series in the parameter &

Q@)=Y NoW, (25)
N>0

and the higher-order asymptotics of the series coefficients are determined by expression (24).
The Borel transform of the series (25) is given by the relations

o0
™)
— [are B, Boy=Y BMN, gL 26
o= [areivaen. 5o Z rv+hrn 0
0 =

where by is an arbitrary parameter. The known asymptotic expansion (24) together with several
assumptions about the analytic properties of B(¢) allow one to resum series (25) using (26) and to
obtain a more precise value of Q(¢). According to (24), the series B(¢) given by (26) converges
in the circle |¢| < 1/a, because BNY) ~ (—a)N NP»~b0 as N — o0o. The nearest singularity of
the series is located on the negative real half-axis at the point t = —1/a. Then the integration
contour over ¢ € [0, 4-00) intersects the boundary of the circle of convergence for expression (25)
at the point 1/a. The problem of analytical continuation of (26) beyond the convergence domain
|t| < 1/a can be solved either by the method of the conformal mapping of the complex plane or
by Padé approximation method [25]. Below we will use the conformal mapping method, because
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it is controlled by HOA. Furthermore, it leads to more accurate results than other methods (see
[26]). In our case the position of the B(¢)-function poles depends on the position of the invariant
coupling constants in the (g1, g2) plane.

For example, let us consider a system (14) with r = 4. There are two kinds of instantons in the
model. For instanton containing one non-zero block we get a(1) =3(2g1 + g2)/4. Otherwise, in-
stanton has two non-zero blocks and a(2) = 3(4g1 + g2)/8. Therefore in stability sector (9) there
are two regions in the plane (g1, g2) where series for B(¢) have different analytical properties:

Region [: if the invariant coupling constants satisfy the condition 8g1+3g> > 0, then |a(1)| >
|a(2)|. The nearest singularity of the B(t) is t = —1/a(1);

Region II: if the invariant coupling constants satisfy the condition 8g; +3g> <0, then |a(2)| >
la(1)|. In this case the nearest singularity of the B(z) is located on the positive real half-axis at
the point t = 1/|a(2)].

Thus, the plane (g1, g2) is divided by the line 8g; + 3g2 = 0. Above this boundary the ana-
lytical properties of B(¢)-functions are determined by one non-zero block instanton, under the
boundary only the two non-zero blocks instanton influences the properties of the function B(z).

The initial values of the invariant coupling constants are located in the region /. Let us apply
conformal mapping method to the equations (15) for invariant coupling constants located in this
region. Usually the conformal map of the complex plane is chosen in the form [24,25]

V1+ae—1 4u
uEe)=—m™— & cu)=———. 27
J1+ag+1 a(u —1)?2
The series (25) can be rewritten in terms of the variable u as
B(e)=Y BMe" =" UuMuV,
N>0 N>0
N
v =80 vNM=%"B™@/ay"Cyn_ . N=1, (28)
m=1
then the conformal Borel map of the quantity Q looks as follows
o
o)=Y U™ / dt t"e  uen)N. (29)
N>0 )

Usually, the parameter by is chosen to weaken the singularity of the Borel transform (26) at the
point t = —1/a. It is fixed by the relation by = b, + 3/2 [24,25].

In the region II the singularity of the function B(¢) is located on the positive real half-axis,
thus the conformal mapping method cannot be used.

3.2. Numerical analysis of the RG-equations

Combining the RG equations (15) and resummation formula (29), we have resummed the RG
equations for the invariant coupling constants

[e.e]

K
0s8i=—8 + Z Ui(N)fdt the tuen)N,
N=0 0

8ile=o = &i- (30)
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Fig. 2. Trajectories of the running coupling constants at D = 3 and r = 4; dashed line — the boundary of applicability of
the resummation method.

92

06 04 0.2 01 g1

Fig. 3. Trajectories of the running coupling constants at D = 2 and r = 4; dashed line — the boundary of applicability of
the resummation method.

Note that Ui(N) and u(¢) are functions of the variables g;. This system of equations (30) can be
solved by the standard finite-difference method.

The results of the numerical solutions of the system (30) for r = 4 are shown as an example
in Fig. 2 at ¢ = 1 and Fig. 3 at ¢ = 2. Fig. 2 shows that in a three dimensional model the invariant
charges trajectories starting with different initial values cross the boundary of the action stability
domain at some value & of the parameter £. Similar behavior is observed for different values
r>4.

Fig. 4 shows how the trajectories of the invariant charges depend on the order of loops cal-
culations for D = 3. We can state that five-loops approximation is sufficient to ensure the loss
of the action stability and accurate calculation of &y. Moreover, numerical analysis shows that
solutions of the Cauchy problem (30) are stable under small perturbations of initial conditions.
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Fig. 4. The solutions of the RG equations (D = 3, r = 4) at different numbers of calculated loops: 1-loop — dotted line,
5-loops — solid line.

It is interesting to note, that we have found the IR stable fixed point of RG equation. Ac-
cording to [14,15] there is no IR stable fixed point for B-functions in one, two and three-loops
approximations. The fixed point appears in four-loops. But the five-loops corrections essentially
change the position of this fixed point, so we can guarantee neither existence nor position of this
fixed point.

In D =2 (¢ =2) case the IR stable fixed point is found in four- and five-loop approximation
too. But in difference to three-loops ones [15] only rare trajectories of the invariant charges cross
the line of the action stability (9) according to Fig. 3. These trajectories are connected with the
very small initial values of renormalized coupling constants.

Our calculations are valid if the invariant coupling constants are in the region /. In the region 11
the series cannot be resummed by the Borel method. Finally, note that a(1) gives the largest
contribution to the HOA in the stability domain and in the neighborhood of the stability boundary
for any r > 2. One can assume that the phase transition occurs near the boundary of stability. For
this reason resummation process can be made only for a(1).

4. The phase transition description

The loss of the action stability is usually considered as a mark of the first-order phase tran-
sition. But obviously, it is not possible to claim that &y defines the first-order phase transition
temperature; only metastable states appear in the system at £ = &j. To answer the question when
the new state of the system (with a condensate) in fact becomes stable, i.e., to determine the
phase transition temperature, more accurate analysis is necessary.

Because the interaction terms (~ X4) of the action (10) are not positively defined now, we
have to take into account the next term (~ X6) of the “bubble” expansion of the action (5).

Let us consider the effective action (10) with an additional F3 = tr(x"x)? term. In the
renormalization procedure in 4 — ¢ scheme F3 will be considered as a composite operator of
canonical dimension A3 = 6 — 3¢. Also, there are composite operators F» = tr(x " x)%tr(x " x)
and F; = (tr XT X)3 with the same canonical dimension as F3, therefore they may be mixed in
the process of renormalization. Thus the term Ao; F; /36 must be included in the effective action,



G.A. Kalagov et al. / Nuclear Physics B 905 (2016) 1644 27

here A¢; are bare homogeneous sources. One can define the set of renormalized parameters A;
using Ao; = Z jxhx M?¢~2, for such extended model Z jx = § . + Zjl.k/s + 0(1/€?). Matrix Z is
a function of the variables g;. Similar to the (13) we can write RG functions for A

0 1
ry = =26 = DA; + higig 2} 3D

One-loop approximation of matrix Z leads to the following results (corresponding three loop
beta functions are presented in Appendix)

3 3
B, =2(1 — )il + g1 [le(ﬁ —r 1)+ 00— 1)+ ZM}

3
58 [A(r— 1) +22], (32)

1
Bro =201 =)+ 181 [23(6r =9) + 2207 = +38)|

3
+ 582 [6A1 + A2(r —2) +3X3], (33)

15 3
By =21 —&)A3 + 781?»3 + 582 [A3(r —4) +4A2], (34)

the rescaling of charges g; — g; /167 is assumed.

Let us mark that the full family of the composite operators with the same canonical dimension
in the D =4 dimensional space must be taken into account for an accurate calculation of the F;
operators renormalization.

This family also includes the operators

fo=w@Ax A, fa=uxTxxT 0+ AxxT 0.

far =@ x x0ix x) + G x o),

fi=tu(Ax T 0wl )+t A G,

faa=tw@x T ) w@xTx) +wx T80 wx T8 x),

fas = (@ x "0 ) e (x T x) (35)

in addition to the F; operators. The canonical dimensions of these operators are d[ f>] = D + 2,
d[ f4;1=2D — 2. But in the analysis presented we limit ourselves by the consideration of the F;
operators only. The contributions of the operators (35) will be discussed below.

It was shown in [14] that () is an order parameter of the phase transition in the model con-
sidered. A non-zero value of (x) leads the superfluid phase transition. The value for magnitude
(x) can be calculated by minimization of the free energy —I". In the framework of the Landau
mean field theory this functional can be written in the form

2 . A 3
—r =t (0t 0+ G (00 007) + 500 007 00 0f + 5 (r o0 00)
A 2 A 3
+50 (00 00%) w0 0ot + 52w (00 ') (36)
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-r

Fig. 5. Thermodynamics potential as a function of order parameter: a — disorder state, b — metastable state, ¢ — “‘super-
fluid” state.

Schematically it can be represented in the figure Fig. 5. The variables (x) and ( %) have the
Pfaffian form (19). For the extrema conditions at the phase transition pointwe get

r=0, ——r=0, I'=0, Vj=0,...,r/2. (37)

Obviously, the loop corrections to equation (36) contain IR singularities. This singularities can
be taken into account using RG method. This procedure leads to the fact that charges go;, Ao;
in (36) must now be replaced by the invariant charges g;, A j» which in turn depend on the pa-
rameter t. After such processing, the contributions of higher loops give only e-corrections to
the mean field theory results. Let us introduce z; = f;/M% s = t/M?, where dg = 1 — ¢/2 is
canonical dimension of the field 8. Then the RG equations for the invariant variables are

Be;

%gi=—2 gil._ =g 38
€8 =5 &jle—o=28, (38)
B} B B}

Oed ;= LA =X, 39
349 2+, J|g:o J (39)
_ _Ag+ys

0=t Zileo =2 (40)

Finally, if we combine previous equations with conditions (36) and (37), we get

_‘|2__2 2ng1+ &
2 4112)_L1 ~|—2n)_L2 +)_L3 ’

(41)

_9  Cnai+d)
16 4n2% ) + 21k + A3

(42)

n is the number of non-zero blocks. Thus, as 7 decreases, the invariant charges intersect the
boundary of the stability domain and new solution (4 1) of stationary equations (37) appears. This
phase has two non-zero blocks, n = 2. Equation (42) determines the transition temperature 7;. In
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A G
~10.2

0.1

- -3 -2 -1 3
—0.1

Fig. 6. Trajectories of “effective” coupling constants A = 4n25»1 +2nxy + A3 (dashed line) and G = 2ng; + g5 (solid
line) at D =3 and n = 2.

Fig. 7. Trajectories of “effective” coupling constants A = 4n2X1 +2n2y + A3 (dashed line) and G = 2ng| + g5 (solid
line)at D=2 and n =2.

order to solve equation (42) it is necessary to know solutions of RG equations (38) and (39). As
before, the RG equations must be resummed. Similar to (15) we can rewrite the equations (39)

K
_ 26 — 2 - - _
Oghij = — Ai + E EN)ujL%y)(gl,gz),
N=0

&
Ailgg =i (43)

The HOA for Lyl.v) are needed for the Borel resummation too. Our analysis in Sect. 2 shows that
calculation of L%V) coefficients is connected with the renormalization of six-point 1PI Green

functions (~ (v/N)®) which include one insertion of composite operators F o~ (v/N)®, hence

L%v) /(v N)OHo ~ Bl.(N) /(v/N)*. Indices structure is irrelevant for the HOA.

Thus, we can resum the RG equations (43) by the formula (29). The results of numerical
computations are shown in Figs. 6 and 7. This allows us to solve the equation (42). As a result,
the root of this equation &, differs only a little from &y obtained in Sect. 3. Remember that &
demonstrates a weak dependence from initial values of the coupling constants g;.

Let us discus here the possible contributions of f operators (35) to the results obtained. There
are some reasons why we have not calculated these counterterms.

First, we can state that these contributions are relatively small compared with F because f
operators are more IR irrelevant in the real space dimensions D = 2,3 then F according to
the canonical dimensions mentioned above. Then the corresponding invariant charges will be
oppressed by the first terms in the RG equations similar to (43) for these variables.

Second, it can be simply shown by the instanton analysis presented, that the high-order con-
tributions of f operators are small in 1/N compared with these of F'.

And third, the calculations of the renormalization of the full family of composite operators F
and f is rather technically difficult now. To calculate the full renormalization constants matrix
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up to & corrections one needs to consider six-loop diagrams. It is not worth while to start these
calculations, as our results show that the first order phase transition takes place and the influence
of F operators on it’s temperature is rather small.

Taking all this into account we can state that in the model considered the first-order phase
transition takes place at a temperature higher than the predictions for continuous phase transi-
tions. To estimate the temperature difference in D = 3 case we have calculated numerically that
to=1/ g% ~ 2 + 3 in a wide range of values g» &~ 107> = 0.1, here 1, is the root of the equation
(42). It is natural to assume that the charges are of the same order of magnitude g; ~ g2 << 1.
Then the renormalization constants Z; have the form Z; = 1+ O(g;). In this approximation the
ratio Z/ Z§2 equals to 1. This leads to the relation

10/8% = %o (44)

The integrals over momenta and the sum over frequencies w; (7), (8) can be reduced to the
one-dimensional integrals. But the RG-approach used in our article gives us an opportunity to
calculate different values for small T only. Thus, it is sufficient to calculate these parameters (7),
(8) using the approximation 86 >> 1. It can be found in this approximation

~ _ TvrB ~ B
g02~7T)24(3), 0~ — (1 —)LVFIH 7'[_)’

Tv 7VFP12r,3
8(m

o~ W(G)» (45)

with corrections ~ 0((/35)’] ). Here vp = mpp/ (2n2) is 3 D-density of states at the Fermi level,
pr is the Fermi momentum. Near the transition point tp can be estimated as

o~ L (46)

where T is the continuous phase transition temperature determined by the usual approach [1].
Combining (44), (45), (46) we get the estimation for the temperature difference between the first
order phase transition and Ty

AT 691275 [ Tp \*
S (47)

T 76 \7r
5. Conclusions

In contrast to the case of the electron systems (r = 2, r — number of spin degrees of freedom)
where continuous phase transition takes place, our investigation has shown that in systems with
high spin fermions (r > 4) critical fluctuations destroy stability of the system (see Fig. 2). In
such systems the first order phase transitions take place in space dimension D = 3. These results
were obtained by means of renormalization group analysis with e-expansion up to the fifth-loop
order of perturbation theory and subsequent Borel resummation. It should be noted that five loop
calculations are indispensable to be sure that the first order phase transition takes place.

The temperature of the transition to the superconducting or the superfluid phase was estimated
for the systems under consideration. Three loop RG analysis for composite operators, which are
similar to (x x7)? in the Landau—Ginzburg functional, was performed for estimation of this tem-
perature. It was revealed that the transition temperature is higher than the theoretical estimation
based on the continuous phase transition formalism for the same model. The obtained difference
in temperatures is rather small (see expr. (47)). But it should be kept in mind that the approach
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used in the present work is applicable for the small deviations from the phase transition tem-
perature only. Thus, in any case, we can guarantee that the difference in the phase transition
temperature is not lower than our estimation.

As for 2D systems, one can state that the five loop approximation is not sufficient to determine
neither the phase transition type nor the phase transition temperature. The last is an excellent
example in favor of further development of the high-loop calculations.
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Appendix A

The five-loop results for the B, four-loop results for the anomalous dimension y; and three-
loop approximations for B, are presented here.

1 1 5
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