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Renormalization Group in Non-Relativistic Quantum Statistics
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Abstract. Dynamic behaviour of a boson gas near the condensation transition in the
symmetric phase is analyzed with the use of an effective large-scale model derived from
time-dependent Green functions at finite temperature. A renormalization-group analysis
shows that the scaling exponents of critical dynamics of the effective multi-charge model
coincide with those of the standard model A. The departure of this result from the descrip-
tion of the superfluid transition by either model E or F of the standard phenomenological
stochastic models is corroborated by the analysis of a generalization of model F, which
takes into account the effect of compressible fluid velocity. It is also shown that, con-
trary to the single-charge model A, there are several correction exponents in the effective
model, which are calculated at the leading order of the ε = 4 − d expansion.

1 Introduction

The analysis of the critical dynamics of the superfluid transition has a long history. The attempts
to derive critical scaling behaviour with the aid of microscopic models [1] and phenomenological
stochastic models [2, 3] have given different results. Rather quickly, the models E and F in the standard
classification [4] became preferred to the Matsubara formalism used in the microscopic approach
[2, 5]. However, an unambiguous result for the dynamic critical exponent at the physically relevant
value of the expansion parameter ε has been elusive in the stochastic setup [6, 7].

The model of bosons with pair interactions [8] has been used to describe the superfluid transition
and it is also the basis of the analysis of the Bose-Einstein condensation [9]. We have re-examined
the microscopic approach to the problem of the phase transition in the boson system with the use of
time-dependent Green functions at finite temperature (GF@FT) instead of the Matsubara functions
used in the previous attempts. Moreover, we have used the functional representation [10] of Green
functions which allows to derive an effective large-scale model for interacting bosons and demon-
strate its renormalizability by standard power counting [11]. We have carried out a field-theoretic
renormalization-group (RG) analysis of the effective model and obtained results which differ from
those of both the early microscopic approach and models E and F. In particular, it is shown that the
critical dimension of the order parameter η and the dynamic exponent z coincide with those of the
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standard model A [4, 6]. Critical exponents describing corrections to scaling are shown to be different
from those of the model A. The effective model possesses three charges, contrary to the model A
which has a single charge. Therefore, in the effective model there are three correction exponents de-
termined by the eigenvalues of the Jacobi matrix of the RG β functions. All these correction exponents
have been calculated at the leading order of the ε = 4 − d expansion.

2 Real-time Green functions at finite temperature

We are investigating a non-relativistic gas of scalar bosons with local repulsive density-density inter-
action near the critical point of condensation. Thus, the Hamilton operator is chosen in the form

Ĥ =
∫

dx
[
ψ̂+
(
−�

2∇2

2m
− µ
)
ψ̂ +
g

2
ψ̂+2ψ̂2

]
(1)

To study long-time asymptotics we use the GF@FT in the setup of Keldysh [12], in which the initial
correlations are neglected and the averaging is carried out in the grand-canonical ensemble of the free
system. Of the four bare propagators of perturbation theory generated by the Hamilton operator (1)
and the grand-canonical averaging two are purely oscillatory in time (see, e.g. [13]), which brings
about unusual divergences in individual Feynman diagrams [14]. To regularize these divergences it is
convenient to introduce the attenuation factor exp[−γ|t − t′|] (γ > 0) in all bare two-point functions
[11]. Physically, this regularization corresponds to dissipation due to interaction, technically it allows
to write unambiguously the generating function of GF@FT as a functional integral:

G(A, A+) =
∫
Dψ2Dψ+2Dψ1Dψ+1 exp

(
A+ψ2 + Aψ+2

+2ψ+1γ
[
1 + n(k)

]
ψ2 + 2ψ+2γn(k)ψ1 + ψ

+
1
{
∂t + iω(k) − γ [1 + 2n(k)

]}
ψ1 (2)

−ψ+2
{
∂t + iω(k) + γ

[
1 + 2n(k)

]}
ψ2 +

ig
2�

(
ψ+1

2
ψ2

1 − ψ+2
2
ψ2

2

))
,

where ω(k) = ε(k)/� =
(
�2 k2/2m − µ

)
/� and n(k) is the mean occupation number of the state with

k in the free boson gas: n(k) =
{
exp
[
βε(k)

] − 1
}−1. In (2) the subscript 2 refers to the physical fields

and 1 to the auxiliary fields. All integrals are implied in the shorthand notation in (2). Time integrals
are taken over the whole real time axis.

To carry out a renormalization-group analysis it is necessary to use a different set of fields [11]
given by the relations η = (ψ2 − ψ1) /

√
2, ξ = (ψ2 + ψ1) /

√
2 and their conjugates. In terms of these

fields the action part in the exponential (2) assumes the form

i
�

S (η, η+, ξ, ξ+) = η+
[−∂t − iω(k) − γ] ξ + ξ+ [−∂t − iω(k) + γ

]
η

−2η+
[
(1 + 2n) γ

]
η − ig

2�

(
η+ξ+ξ2 + ξ+

2
ξη + ξ+η+η2 + η+

2
ηξ
)
. (3)

For the RG analysis we have constructed an effective large-scale model with definite canonical di-
mensions of the fields. In the critical region p2 ∼ µ → 0 the mean occupation number n(p) factor is
singular and the leading contribution of the unregularized Keldysh function

∆K
IR(ω , k) =

4πTC δ [ω − ω(k)]
�ω(k)

,

where TC is the critical temperature in energy units, is the necessary generalized homogeneous func-
tion, which – together with the retarded and advanced propagators brought about by the free ac-
tion (3) – leads to canonical dimensions of the effective infra-red (IR) model dξ = dξ+ = d/2 − 1,
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�
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∆K
IR(ω , k) =

4πTC δ [ω − ω(k)]
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,

where TC is the critical temperature in energy units, is the necessary generalized homogeneous func-
tion, which – together with the retarded and advanced propagators brought about by the free ac-
tion (3) – leads to canonical dimensions of the effective infra-red (IR) model dξ = dξ+ = d/2 − 1,

dη = dη+ = d/2+1 [11]. Thus, the critical dimension is dc = 4 and the two rightmost vertex structures
in (3) are IR irrelevant and discarded. To keep these canonical dimensions in the regularized model it
is necessary to choose the attenuation parameter γ ∝ k2.

3 Renormalization-group analysis of the effective model

We use the massless scheme to calculate renormalization constants [10] putting µ = 0, so that
n(k) ≈ 2mTC/�

2k2. The extra parameters �, m and TC are removed from the action by the scal-
ing of coordinates, time and fields. In the streamlined notation the basic action of the effective IR
model is

S̃ = −4αη+η + η+[−∂t + ∇2(uαi − α)]ξ + ξ+[−∂t + ∇2(uαi + α)]η

− iαg
2
η+ξ+ξ2 − iαg

2
ξ+

2
ηξ (4)

corresponding to the weight exp (S̃ ) in (2). For convenience, the coupling constants are expressed in
the form αg and αg with the real coefficient α of the attenuation factor. The real parameter u is a
nonperturbative charge typical of models in dynamic critical phenomena [10].

Action (4) is similar to that brought about by the stochastic Gross-Pitaevskii equation [15], al-
though the content of the fields is quite different: in [15] the counterpart of ξ is the order parameter
field and the counterpart of η is the auxiliary response field of the stochastic setup. In (4) both ξ and η
are linear combinations of the physical field ψ2 and the auxiliary field ψ1 of the Keldysh formalism. It
should also be noted that the stochastic setup of the boson problem is based on a solution of the evo-
lution equation for the density operator in which several approximations are used [16]. In the Keldysh
approach the initial correlations are neglected but otherwise the quantum dynamics is exact and the
effective model similar to that of the stochastic approach is a result of the standard renormalization
procedure.

The basic action (4) gives rise to propagators (∆ηη+ (t, k) = 0)

∆ξξ+ (t, k) =
2
k2 exp

[
−iαuk2(t − t′) − αk2|t − t′|

]
,

∆ξη+ (t, k) = θ(t − t′) exp
[
−iαuk2(t − t′) − αk2|t − t′|

]
, (5)

∆ηξ+ (t, k) = −θ(t′ − t) exp
[
−iαuk2(t − t′) − αk2|t − t′|

]
.

The structure of the interaction in (3) is such that the closed loops of the temporal step functions
of the propagators (5) make certain classes of Feynman diagrams to vanish [11]. In particular, one-
irreducible diagrams with external ξ or ξ+ arguments only vanish identically. Moreover, the basic
action (4) obeys the the symmetry S̃ (η+, η, ξ+, ξ, g, g) = S̃ ∗(−η+,−η, ξ+, ξ, g∗, g∗) (integration by parts
is implied). The subsequent restrictions on renormalization render the effective IR model multiplica-
tively renormalizable with the renormalized action

S̃ = −Z0ηη
+ + η+(−Z1∂t + Z2 ∇2)ξ + ξ+(−Z3∂t + Z4 ∇2)η − Z5η

+ξ+ξξ − Z6ηξξ
+ξ+.

The basic action (4) is invariant under the constant gauge transformation ξ → ξtic, ξ+ → ξ+t−ic,
η → ηtic, η+ → η+t−ic as well. We use this invariance to prescribe real renormalization constants to
the fields η and η+.

We seek the solution for renormalization group functions in the physical subspace g = g∗ and
parametrize the coupling constants by real g1 and g2 as g = g1 + ig2 and g = g1 − ig2. Counterterms
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in the leading order have been calculated in [11]. In the MS scheme they give rise to (see, e.g. [10])
the β functions of charges and γ functions of fields and the parameter α in the form

βg1 = −
2
(
2u2 + 3

)
g1g2 + ug2

2 − ug2
1

8π2 (u2 + 1
) − εg1,

βg2 =
2ug1g2 −

(
4u2 + 5

)
g2

2 + g
2
1

8π2 (u2 + 1
) − εg2, (6)

βu =
(u2 + 6)ug2

2 − ug2
1 + 6g1g2

64π4(u2 + 9)

− (u2 + 1)
128π4 [(g2

1 + g
2
2) ImM2 + 2(g2

1 − g2
2) ImM3 + 4g1g2ReM3].

γα = −
3g2

1 + 2ug1g2 − (2u2 + 9)g2
2

128π4(u2 + 9)
+

(g2
1 + g

2
2)

128π4 (ReM2 − u ImM2)

+
(g2

1 − 2ug1g2 − g2
2) ReM3

64π4 −
(ug2

1 + 2g1g2 − ug2
2) ImM3

64π4 ,

γη =
3g2

1 + 2ug1g2 − (2u2 + 9)g2
2

256π4(u2 + 9)
−

(g2
1 + g

2
2)

256π4 (M1 + ReM2 − u ImM2)

−
(g2

1 − 2ug1g2 − g2
2) ReM3

128π4 +
(ug2

1 + 2g1g2 − ug2
2) ImM3

128π4

γξ = −
3g2

1 + 2ug1g2 − (2u2 + 9)g2
2

256π4(u2 + 9)
−

[g2
1 + 2(u + 2i)g1g2 − g2

2] ReM3

128π4

−
(g2

1 + g
2
2) [ReM2 + (u + 2i) ImM2 − M1]

256π4

−
[(u + 2i)g2

1 − 2g1g2 − (u + 2i)g2
2] ImM3

128π4 ,

where

M1 =
A + 3B − πu − 2u arctan C−

u2 + 1
, M2 =

(u − i)2(2i arctan(2C+) − πi − A − B)
(u2 + 1)2 ,

M3 =
(u + i)2(B − 2i arctan(u/3))

(u2 + 1)2 , A = ln(u2 + 1), B = ln
(

u2 + 9
16

)
, C± =

u2 ± 3
4u
.

In contrast with the models E and F, in which the large number of nontrivial nodes of β functions
hinders the choice of the IR-stable fixed point, the β functions (6) vanish simultaneously in only three
cases:

(i) The trivial fixed point g1∗ = g2∗ = 0 with arbitrary u∗. Eigenvalues of the Jacobi matrixωi j = ∂iβ j

are (−ε,−ε, 0) confirming the IR instability of the fixed point.

(ii) g1∗ = 0, g2∗ = −8π2ε/5, u∗ = 0. Eigenvalues of the ω matrix are (ε, ε/5, 2 log(4/3) ε2/25). The
positive sign of all eigenvalues at ε > 0 means that this fixed point is IR stable.

(iii) g2∗ = −2π2ε, w∗ ≡ 1/u∗ = 0 with arbitrary g1∗. The infinite value u∗ is taken into account due
to the nonperturbative nature of the charge u. This fixed point leads to eigenvalues of the matrix
ωi j equal to (ε, −ε/16, 0). Thus, this is an unstable saddle point. It corresponds to quantum-
mechanical behaviour of the system described by oscillating propagators without attenuation.
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The calculation of the γ functions at the IR stable fixed point (ii) yields the critical dimensions:

γ∗ξ =
ε2

100
, γ∗η =

(
12 log

4
3
− 1
)
ε2

100
, γ∗α =

(
1 − 6 log

4
3

)
ε2

50
. (7)

It should be noted that at the only IR-stable fixed point (ii) the charges g and g are purely imaginary.
Moreover, in terms of variables φ and φ′ defined by relations φ′1 = η

+−η, φ′2 = i(η++η), φ1 = (ξ++ξ)/2,
φ2 = i(ξ+ − ξ)/2 the action (4) at the fixed point (ii) assumes the form

S̃ ∗ = αφ′
2
+ φ′
[
−∂tφ + α

(
∇2φ +

g2∗
2
φ3
)]
, (8)

which coincides with the De Dominicis-Janssen action [17, 18] of the stochastic two-component
model A [10] up to notation. The negative sign of g2∗ in (8) matches the correct sign in model A
[10]. This is why it is not surprising that the result (7) coincides with the leading order of the ε
expansion for the critical dimensions in model A.

4 Stochastic model with density fluctuations

The results of the microscopic approach are supported by the generalization of the F model [2, 3]
to incorporate the effect of fluctuating fluid velocity u. The consistent stochastic problem taking
into account mode coupling theory [10] for the complex order parameter ψ, field of temperature
fluctuations m and the velocity u is

∂tψ = −vi∂iψ + λ(1 + ib)
(
∇2ψ − g1ψ

+ψ2

3
+ g2mψ

)

+ iλg3ψ

(
g2ψ

+ψ − m − rw
v2

2

)
+ fψ+ ,

∂tm = −
(

r2c2w

ρ0
+ 1
)
∂i(mvi) − λu∇2

(
g2ψ

+ψ − m − rw
v2

2

)

+ iλg3

(
ψ+∇2ψ − ψ∇2ψ+

)
+ fm,

∂tvi =
γ

ρ0
∇2vi +

[
ζd + (d − 2)γ

]
∂ j∂ivi

ρ0d
− ∂ j(viv j)

− 1
wρ0

(∂iψ
+)
(
∇2ψ − g1ψ

+ψ2

3
+ g2mψ

)
− 1

2
∂iv

2

− 1
wρ0

(∂iψ)
(
∇2ψ+ − g1ψ

+2ψ

3
+ g2mψ+

)

+

(
rc2

ρ0
+

1
rw

)
∂i

(
g2ψ

+ψ − m − wrv2

2

)
+ fv,

where γ and ζ are the shear and bulk viscosity, respectively, λ is the kinetic coefficient, b and g3 are
the mode-coupling coefficients, u is the nonperturbative charge of the model F, c is the speed of sound
and ρ0 the mean density. It is assumed that ρ = ρ0 + m. For simplicity, some dimensional parameters
are put equal to the unity. The uncorrelated random sources fi are Gaussian with zero mean.
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The standard procedure [10] leads to the dynamic action with auxiliary fields ψ′, ψ+′,m′, v′:

S dyn = b1ψ
+′ψ′ − b2m′∂2m′ + b3∂iv

′
j∂iv
′
j + b4∂ jv

′
j∂iv
′
i + a1ψ

+′∇2ψ

+ a2ψ
′∇2ψ+ + a3m′∂ivi + a4m′∇2m + a5v

′
i∇2vi + a6v

′
i∂i∂ jv j

+ a7v
′
i∂im − ψ+′∂tψ − ψ′∂tψ

+ − m′∂tm − v′∂tv + ψ
+′(−vi∂iψ

+ a8ψ
+ψψ + a9mψ + a10ψv

2) + ψ′
[ − vi∂iψ

+ + a11(ψ+)2ψ

+ a12mψ+ + a13ψ
+v2
]
+ m′
[ − m∂ivi + a14∇2(ψ+ψ) + a15∇2v2 (9)

+ a16ψ
+∇2ψ + a17ψ∇2ψ+

]
+ v′i
[ − ∂ j(viv j) + a18(∂iψ

+)∇2ψ

+ a19ψ
+ψ2∂iψ

+ + a20mψ∂iψ
+ + a21(∂iψ)∇2ψ+ + a22(ψ+)2ψ∂iψ

+ a23mψ+∂iψ + a24∂i(ψ+ψ) + a25∂iv
2].

The analysis of the canonical dimensions reveals that a3 = −r2c2w/ρ0 − 1 is the most IR-relevant
parameter. The leading IR-relevant propagators homogeneous under scaling ω, k→ s2ω, sk are

∆mm(ω, k) =
b34

a2
7

, ∆m′m(ω, k) =
a56k2 + iω

a3a7k2 , ∆m′v‖ (ω, k) = − i�k
a3k2 ,

δv′‖m(ω, k) = − i�k
a7k2 , ∆v‖m(ω, k) =

a3b34(iω − a4k2) + a7b2(a56k2 + iω)
a2

3a2
7k2

i�k,

∆v‖v‖ (ω, k) =
b2

a3a7k2 P‖, ∆v′‖v‖ (ω, k) =
a4k2 + iω

a3a7k2 P‖,

where P‖ is the longitudinal projection operator. In the numerator of propagator ∆v‖m, the product
a3b34 appears, in which b34 = [ζ + (2d − 2)γ/d]/ρ0 is irrelevant. The product, however, has the
canonical dimension equal to zero and is thus marginal.

It is even more important that the propagators ∆m′m, ∆m′v‖ , ∆v‖m, ∆v‖v‖ and ∆v′‖v‖ contain the IR-
relevant coefficient a3 in the denominator. It renders irrelevant the contributions of all the diagrams in
which these propagators are inserted. Analogously, all the contributions of the propagators ∆v⊥v⊥ and
∆mm may be discarded, because they have the irrelevant factor b34 in the numerator. It is important to
note that the irrelevant propagators may be discarded, because at vertices of the action (9) there are
no charges with positive canonical dimensions.

All propagators with the field m′ are irrelevant so that vertices with m′ do not contribute to leading
IR asymptotics of Green functions. Inverting the matrix of the rest marginal propagators ∆ψ′ψ+, ∆ψψ′+,
∆ψψ+, ∆v′‖m, ∆v′⊥v⊥ and discarding irrelevant vertices of action (9) we arrive at the generating function
for the order parameter

Geff(A, A+) =
∫
Dψ+DψDψ′+Dψ′DmDm′DvDv′δ(m′) exp

(
S ′dyn + Aψ+ + A+ψ

)
, (10)

where δ(m′) is the functional δ function and the effective action is

S ′dyn = b1ψ
+′ψ′ + a1ψ

+′∇2ψ + a2ψ
′∇2ψ+

+ a5v
′
⊥∇2v⊥ + a7v

′
i∂im − ψ+′∂tψ − ψ′∂tψ

+ − v′⊥∂tv⊥

+ ψ+′[−vi∂i(ψ) + a8ψ
+ψψ + a9mψ + a10ψv

2]
+ ψ′[−vi∂iψ

+ + a11ψ
+ψψ+ + a12mψ+ + a13ψ

+v2] (11)
+ m′[−m∂ivi + a14∇2(ψ+ψ) + a16ψ

+∇2ψ + a17ψ∇2ψ+]
+ v′i[−∂ j(viv j) + a24∂i(ψ+ψ) + a25∂iv

2].

6

EPJ Web of Conferences 226, 01005 (2020) https://doi.org/10.1051/epjconf/202022601005
Mathematical Modeling and Computational Physics 2019



The standard procedure [10] leads to the dynamic action with auxiliary fields ψ′, ψ+′,m′, v′:

S dyn = b1ψ
+′ψ′ − b2m′∂2m′ + b3∂iv

′
j∂iv
′
j + b4∂ jv

′
j∂iv
′
i + a1ψ

+′∇2ψ

+ a2ψ
′∇2ψ+ + a3m′∂ivi + a4m′∇2m + a5v

′
i∇2vi + a6v

′
i∂i∂ jv j

+ a7v
′
i∂im − ψ+′∂tψ − ψ′∂tψ

+ − m′∂tm − v′∂tv + ψ
+′(−vi∂iψ

+ a8ψ
+ψψ + a9mψ + a10ψv

2) + ψ′
[ − vi∂iψ

+ + a11(ψ+)2ψ

+ a12mψ+ + a13ψ
+v2
]
+ m′
[ − m∂ivi + a14∇2(ψ+ψ) + a15∇2v2 (9)

+ a16ψ
+∇2ψ + a17ψ∇2ψ+

]
+ v′i
[ − ∂ j(viv j) + a18(∂iψ

+)∇2ψ

+ a19ψ
+ψ2∂iψ

+ + a20mψ∂iψ
+ + a21(∂iψ)∇2ψ+ + a22(ψ+)2ψ∂iψ

+ a23mψ+∂iψ + a24∂i(ψ+ψ) + a25∂iv
2].

The analysis of the canonical dimensions reveals that a3 = −r2c2w/ρ0 − 1 is the most IR-relevant
parameter. The leading IR-relevant propagators homogeneous under scaling ω, k→ s2ω, sk are

∆mm(ω, k) =
b34

a2
7

, ∆m′m(ω, k) =
a56k2 + iω

a3a7k2 , ∆m′v‖ (ω, k) = − i�k
a3k2 ,

δv′‖m(ω, k) = − i�k
a7k2 , ∆v‖m(ω, k) =

a3b34(iω − a4k2) + a7b2(a56k2 + iω)
a2

3a2
7k2

i�k,

∆v‖v‖ (ω, k) =
b2

a3a7k2 P‖, ∆v′‖v‖ (ω, k) =
a4k2 + iω

a3a7k2 P‖,

where P‖ is the longitudinal projection operator. In the numerator of propagator ∆v‖m, the product
a3b34 appears, in which b34 = [ζ + (2d − 2)γ/d]/ρ0 is irrelevant. The product, however, has the
canonical dimension equal to zero and is thus marginal.

It is even more important that the propagators ∆m′m, ∆m′v‖ , ∆v‖m, ∆v‖v‖ and ∆v′‖v‖ contain the IR-
relevant coefficient a3 in the denominator. It renders irrelevant the contributions of all the diagrams in
which these propagators are inserted. Analogously, all the contributions of the propagators ∆v⊥v⊥ and
∆mm may be discarded, because they have the irrelevant factor b34 in the numerator. It is important to
note that the irrelevant propagators may be discarded, because at vertices of the action (9) there are
no charges with positive canonical dimensions.

All propagators with the field m′ are irrelevant so that vertices with m′ do not contribute to leading
IR asymptotics of Green functions. Inverting the matrix of the rest marginal propagators ∆ψ′ψ+, ∆ψψ′+,
∆ψψ+, ∆v′‖m, ∆v′⊥v⊥ and discarding irrelevant vertices of action (9) we arrive at the generating function
for the order parameter

Geff(A, A+) =
∫
Dψ+DψDψ′+Dψ′DmDm′DvDv′δ(m′) exp

(
S ′dyn + Aψ+ + A+ψ

)
, (10)

where δ(m′) is the functional δ function and the effective action is

S ′dyn = b1ψ
+′ψ′ + a1ψ

+′∇2ψ + a2ψ
′∇2ψ+

+ a5v
′
⊥∇2v⊥ + a7v

′
i∂im − ψ+′∂tψ − ψ′∂tψ

+ − v′⊥∂tv⊥

+ ψ+′[−vi∂i(ψ) + a8ψ
+ψψ + a9mψ + a10ψv

2]
+ ψ′[−vi∂iψ

+ + a11ψ
+ψψ+ + a12mψ+ + a13ψ

+v2] (11)
+ m′[−m∂ivi + a14∇2(ψ+ψ) + a16ψ

+∇2ψ + a17ψ∇2ψ+]
+ v′i[−∂ j(viv j) + a24∂i(ψ+ψ) + a25∂iv

2].

The fields v′⊥, v′‖ in (11) play the role of Lagrange coefficients. They may be integrated explicitly in
(10) giving rise to new functional δ functions

δ(∂tv⊥ + P⊥(v∇v) − ν∇2v⊥), (12)
δ(a7∇m − P‖(v∇v) + a24∇(ψ+ψ) + a25∇v2). (13)

The condition imposed in (12) is the Navier-Stokes equation with the equilibrium solution v ≡ 0. The
second condition (13) then yields m = −a24(ψ+ψ)/a7 in the set of falling off fields considered in (10).
Using the functional δ functions to perform integrations over m, m′ and v in (10) we obtain the final
effective IR dynamic action describing the critical dynamics of the order parameter:

S eff = b1ψ
+′ψ′ + a1ψ

+′∇2ψ + a2ψ
′∇2ψ+ − ψ+′∂tψ − ψ′∂tψ

+

+ψ+′[a8ψ
+ψ2 − a9a24(ψ+ψ2)/a7] + ψ′[a11(ψ+)2ψ − a12a24(ψ+)2ψ/a7].

It is readily seen that this action differs from the action (8) by scaling of fields and parameters only
thus confirming the conclusion based on the microscopic approach.

5 Conclusion

In conclusion, we have shown that the critical exponents of dynamics of the superfluid transition
and the Bose-Einstein condensation transition coincide with those of the two-component model A. In
particular, the dynamic exponent z of the transition is known to order ε4 [19]:

z = 2 + 0.014522 ε2 + 0.011059 ε3 − 0.005265 ε4.

High-order asymptotics have been studied in [20]. The most accurate results for the exponent z cor-
respond to the Borel resummation of four orders of the ε expansion in [21]: z(ε = 1) = 2.014+011

−0.00.
Moreover, the correction exponent has been inferred at the leading order of the ε expansion in the
standard fashion from the stability exponents of the corresponding fixed point. At the physical value
of the parameter ε = 1 the smallest stability exponent – which is the exponent of corrections to critical
scaling – is given by

ω =
2 ε2

25
log

4
3
.

This value coincides with the result for the correction exponent η−ηc of the stochastic Gross-Pitaevskii
model [15] obtained by a different approach.
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