30 research outputs found

    Time-resolved imaging of non-diffusive carrier transport in long-lifetime halide perovskite thin films

    Full text link
    Owing to their exceptional semiconducting properties, hybrid inorganic-organic perovskites show great promise as photovoltaic absorbers. In these materials, long-range diffusion of charge carriers allows for most of the photogenerated carriers to contribute to the photovoltaic efficiency. Here, time-resolved photoluminescence (PL) microscopy is used to directly probe ambipolar carrier diffusion and recombination kinetics in hybrid perovskites. This technique is applied to thin films of methylammonium lead tri-iodide MAPbI3_3 obtained with two different fabrication routes, methylammonium lead tribromide (MAPbBr3_3), and an alloy of formamidinium lead tri-iodide (FAPbI3_3) and methylammonium lead bromide FA0.85_{0.85}MA0.15_{0.15}Pb(I0.85_{0.85}Br_0.15{0.15})3_3. Average diffusion coefficients in the films leading to the highest device efficiencies and longest lifetimes, i.e., in FA0.85_{0.85}MA0.15_{0.15}Pb(I0.85_{0.85}Br0.15_{0.15})3_3 and acetonitrile-processed MAPbI3_3, are found to be several orders of magnitude lower than in the other films. Further examination of the time-dependence shows strong evidence for non-diffusive transport. In particular, acetonitrile-processed MAPbI3_3 shows distinct diffusion regimes on short and long timescales with an effective diffusion constant varying over 2 orders of magnitude. Our results also highlight the fact that increases in carrier lifetime in this class of materials are not necessarily concomitant with increased diffusion lengths and that the PL quantum efficiency under solar cell operating conditions is a greater indication of material, and ultimately device, quality

    Photovoltaic Performance of FAPbI3 Perovskite Is Hampered by Intrinsic Quantum Confinement

    Get PDF
    Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells

    Elucidating the long-range charge carrier mobility in metal halide perovskite thin films

    Full text link
    Many optoelectronic properties have been reported for lead halide perovskite polycrystalline films. However, ambiguities in the evaluation of these properties remain, especially for long-range lateral charge transport, where ionic conduction can complicate interpretation of data. Here we demonstrate a new technique to measure the long-range charge carrier mobility in such materials. We combine quasi-steady-state photo-conductivity measurements (electrical probe) with photo-induced transmission and reflection measurements (optical probe) to simultaneously evaluate the conductivity and charge carrier density. With this knowledge we determine the lateral mobility to be ~ 2 cm2/Vs for CH3NH3PbI3 (MAPbI3) polycrystalline perovskite films prepared from the acetonitrile/methylamine solvent system. Furthermore, we present significant differences in long-range charge carrier mobilities, from 2.2 to 0.2 cm2/Vs, between films of contemporary perovskite compositions prepared via different fabrication processes, including solution and vapour phase deposition techniques. Arguably, our work provides the first accurate evaluation of the long-range lateral charge carrier mobility in lead halide perovskite films, with charge carrier density in the range typically achieved under photovoltaic operation

    Atomic layer deposited electron transport layers in efficient organometallic halide perovskite devices

    Get PDF
    Amorphous TiO2 and SnO2 electron transport layers (ETLs) were deposited by low-temperature atomic layer deposition (ALD). Surface morphology and x-ray photoelectron spectroscopy (XPS) indicate uniform and pinhole free coverage of these ALD hole blocking layers. Both mesoporous and planar perovskite solar cells were fabricated based on these thin films with aperture areas of 1.04 cm2 for TiO2 and 0.09 cm2 and 0.70 cm2 for SnO2. The resulting cell performance of 18.3 % power conversion efficiency (PCE) using planar SnO2 on 0.09 cm2 and 15.3 % PCE using mesoporous TiO2 on 1.04 cm2 active areas are discussed in conjunction with the significance of growth parameters and ETL composition

    Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss

    Get PDF
    The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%

    Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

    Full text link
    Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.Comment: 160 pages, 21 figure

    Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent

    Get PDF
    The very fast evolution in certified efficiency of lead-halide organic-inorganic perovskite solar cells to 24.2%, on par and even surpassing the record for polycrystalline silicon solar cells (22.3%), bears the promise of a new era in photovoltaics and revitalisation of thin film solar cell technologies. However, the presence of toxic lead and particularly toxic solvents during the fabrication process makes large-scale manufacturing of perovskite solar cells challenging due to legislation and environment issues. For lead-free alternatives, non-toxic tin, antimony and bismuth based solar cells still rely on up-scalable fabrication processes that employ toxic solvents. Here we employ non-toxic methyl-acetate solution processed (CH3NH3)3Bi2I9 films to fabricate lead-free, bismuth based (CH3NH3)3Bi2I9 perovskites on mesoporous TiO2 architecture using a sustainable route. Optoelectronic characterization, X-ray diffraction and electron microscopy show that the route can provide homogeneous and good quality (CH3NH3)3Bi2I9 films. Fine-tuning the perovskite/hole transport layer interface by the use of conventional 2,2′,7,7′-tetrakis (N,N′-di-p-methoxyphenylamino)−9,9′-spirbiuorene, known as Spiro-OMeTAD, and poly(3-hexylthiophene-2,5-diyl - P3HT as hole transporting materials, yields power conversion efficiencies of 1.12% and 1.62% under 1 sun illumination. Devices prepared using poly(3-hexylthiophene-2,5-diyl hole transport layer shown 300 h of stability under continuous 1 sun illumination, without the use of an ultra violet-filter

    Advances in hybrid solar cells: from dye-sensitised to perovskite solar cells

    No full text
    This thesis presents a study of hybrid solar cells, specifically looking at various methods which can be employed in order to increase the power conversion efficiency of these devices. The experiments and results contained herein also present a very accurate picture of how rapidly the field of hybrid solar cells has progressed within the past three years. Chapters 1 and 2 present the background and motivation for the investigations undertaken, as well as the relevant theory underpinning solar cell operation. Chapter 2 also gives a brief review of the literature pertinent to the main types of devices investigated in this thesis; dye-sensitised solar cells, semiconductor sensitized solar cells and perovskite solar cells. Descriptions of the synthetic procedures, as well as the details of device fabrication and any measurement techniques used are outlined in Chapter 3. The first set of experimental results is presented in Chapter 4. This chapter outlines the synthesis of mesoporous single crystals (MSCs) of anatase TiO2 as well as an investigation of its electronic properties. Having shown that this material has superior electronic properties to the conventionally used nanoparticle films, they were then integrated into low temperature processed dye-sensitised solar cells and achieved power conversion efficiencies of &GT; 3&percnt;, exhibiting electron transport rates which were orders of magnitude higher than those obtained for the high temperature processed control films. Chapter 5 further investigates the use of MSCs in photovoltaic devices, this time utilising a more strongly absorbing inorganic sensitiser, Sb2S3. Utilising the readily tunable pore size of MSCs, these Sb2S3 devices showed an increase in voltage and fill factor which can be attributed to a decrease in recombination within these devices. This chapter also presents the use of Sb2S3 in the meso-superstructured configuration. This device architecture showed consistently higher voltages suggesting that in this architecture, charge transport occurs through the absorber and not the mesoporous scaffold. Chapters 6 and 7 focus on the use of hybrid organic-inorganic perovskites in photovoltaic devices. In Chapter 6 the mixed halide, lead-based perovskite, CH3NH3PbI3-xClx is employed in a planar heterojunction device architecture. The effects of Lewis base passivation on this material are investigated by determining the photoluminescence (PL) lifetimes and quantum efficiencies of treated and untreated films. It is found that passivating films of this material using Lewis bases causes an increase in the PLQE at low fluences as well as increasing the PL lifetime. By globally fitting these results to a model the trap densities are extracted and it is found that using these surface treatments decreases the trap density of the perovskite films. Finally, these treatments are used in complete solar cells resulting in increased power conversion efficiencies and an improvement in the stabilised power output of the devices. Chapter 7 describes the materials synthesis and characterisation of the tin-based perovskite CH3NH3SnI3 and presents the first operational, lead-free perovskite solar cell. The work presented in this thesis describes significant advances in the field of hybrid solar cells, specifically with regards to improvements made to the nanostructured electrode, and the development and implementation of more highly absorbing sensitizers. The improvements discussed here will prove to be quite important in the drive towards exploiting solar power as a clean, affordable source of energy.</p

    Improved charge balance in green perovskite light-emitting diodes with atomic layer-deposited Al2O3

    No full text
    Perovskite light-emitting diodes (LEDs) have experienced a rapid increase in efficiency over the last several years and are now regarded as promising low-cost devices for displays and communication systems. However, it is often challenging to employ ZnO, a well-studied electron transport material, in perovskite LEDs due to chemical instability at the ZnO/perovskite interface and charge injection imbalance caused by the relatively high conductivity of ZnO. In this work, we address these problems by depositing an ultrathin Al2O3 interlayer at the ZnO/perovskite interface, allowing the fabrication of green-emitting perovskite LEDs with a maximum luminance of 21 815 cd/m2. Using atomic layer deposition, we can precisely control the Al2O3 thickness and thus fine-tune the electron injection from ZnO, allowing us to enhance the efficiency and operational stability of our LEDs
    corecore