25 research outputs found

    New Spirometry Indices for Detecting Mild Airflow Obstruction.

    Get PDF
    The diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstration of airflow obstruction. Traditional spirometric indices miss a number of subjects with respiratory symptoms or structural lung disease on imaging. We hypothesized that utilizing all data points on the expiratory spirometry curves to assess their shape will improve detection of mild airflow obstruction and structural lung disease. We analyzed spirometry data of 8307 participants enrolled in the COPDGene study, and derived metrics of airflow obstruction based on the shape on the volume-time (Parameter D), and flow-volume curves (Transition Point and Transition Distance). We tested associations of these parameters with CT measures of lung disease, respiratory morbidity, and mortality using regression analyses. There were significant correlations between FEV1/FVC with Parameter D (r = -0.83; p < 0.001), Transition Point (r = 0.69; p < 0.001), and Transition Distance (r = 0.50; p < 0.001). All metrics had significant associations with emphysema, small airway disease, dyspnea, and respiratory-quality of life (p < 0.001). The highest quartile for Parameter D was independently associated with all-cause mortality (adjusted HR 3.22,95% CI 2.42-4.27; p < 0.001) but a substantial number of participants in the highest quartile were categorized as GOLD 0 and 1 by traditional criteria (1.8% and 33.7%). Parameter D identified an additional 9.5% of participants with mild or non-recognized disease as abnormal with greater burden of structural lung disease compared with controls. The data points on the flow-volume and volume-time curves can be used to derive indices of airflow obstruction that identify additional subjects with disease who are deemed to be normal by traditional criteria

    Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets

    No full text

    Awake Testing during Deep Brain Stimulation Surgery Predicts Postoperative Stimulation Side Effect Thresholds

    No full text
    Despite substantial experience with deep brain stimulation for movement disorders and recent interest in electrode targeting under general anesthesia, little is known about whether awake macrostimulation during electrode targeting predicts postoperative side effects from stimulation. We hypothesized that intraoperative awake macrostimulation with the newly implanted DBS lead predicts dose-limiting side effects during device activation in clinic. We reviewed 384 electrode implants for movement disorders, characterized the presence or absence of stimulus amplitude thresholds for dose-limiting DBS side effects during surgery, and measured their predictive value for side effects during device activation in clinic with odds ratios ±95% confidence intervals. We also estimated associations between voltage thresholds for side effects within participants. Intraoperative clinical response to macrostimulation led to adjustments in DBS electrode position during surgery in 37.5% of cases (31.0% adjustment of lead depth, 18.2% new trajectory, or 11.7% both). Within and across targets and disease states, dose-limiting stimulation side effects from the final electrode position in surgery predict postoperative side effects, and side effect thresholds in clinic occur at lower stimulus amplitudes versus those encountered in surgery. In conclusion, awake clinical testing during DBS targeting impacts surgical decision-making and predicts dose-limiting side effects during subsequent device activation
    corecore