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ABSTRACT

We propose a tracking system that is especially well-suited to track-
ing targets which change drastically in size or appearance. To ac-
complish this, we employ a fast, two phase template matching algo-
rithm along with a periodic template update method. The template
matching step ensures accurate localization while the template up-
date scheme allows the target model to change over time along with
the appearance of the target. Furthermore, the algorithm can deliver
real-time results even when targets are very large. We demonstrate
the proposed method with good results on several sequences show-
ing targets which exhibit large changes in size, shape, and appear-
ance.

Index Terms—Object tracking, template update, scale space,
registration

1. INTRODUCTION

This paper addresses the problem of tracking objects that change
drastically in size over time. When objects move closer or farther
from the camera, significant changes in size, shape, and intensity
profile occur, as demonstrated in Figure 1. Methods that do not take
changes in target appearance into account can not accurately main-
tain track in these cases.

Several techniques attempt to address this problem using the
popular the mean-shift framework. Collins creates an additional fea-
ture space based on target scale characteristics and solves for scale
parameters and translation parameters simultaneously [1]. Peng et
al. and Qian et al. adjust the window size and kernel bandwidth of
the tracker based on estimations of target scale in successive frames [2,
3]. In these methods, localization is based on an unchanging inten-
sity histogram usually taken from the first frame of the video se-
quence. When the target is very far, its estimated histogram may
be very different from its histogram when the target is closer. Be-
cause these methods do not account for this, they can lose track as
the appearance changes.

Template tracking is another approach that addresses tracking
targets of variable size [4, 5, 6]. The goal of these methods is to
register a template image onto the current frame to determine move-
ment. When registration parameters allow scaling, it is possible for
the template tracker to follow the changing size of the target. How-
ever, this method is defeated if the object changes significantly in
appearance as it changes in size.

Based on a review of the literature, there appear to be two sources
of error as the target is tracked. Spatial drift is the change in the
model such that the model and target are misaligned. Feature drift is
the change of target appearance as it diverges from the appearance
of the model over time.

We propose a method that deals with these two sources of er-
ror separately. Spatial drift is prevented by registering the previous

Fig. 1. First, middle, and last frame from the LEAVES sequence.
Notice the drastic change in size, shape, and appearance as the leaves
move from a small blob in the distance to fill the entire frame.

target representation to the current frame and registering the previ-
ous frame to a periodically updated key model. This accounts for
frame-to-frame movement and incorporates the influence of a stable
model to minimize transient affects. Feature drift is accounted for by
updating the key model in a way that limits spatial drift and allows
smooth feature changes over time. This update allows the method
to track features which are specific to the target’s recent appearance
and is robust against large changes in scale.

2. PROPOSED ALGORITHM

The proposed method is divided into two main components: tem-
plate matching and template update. Template matching, described
in Section 2.1, prevents spatial drift in the target model by perform-
ing two registration procedures. First, translation parameters p1 are
determined, which register the image I at the current frame to the
model, M̂t obtained from the previous frame. This reduces frame-
to-frame spatial drift. Next, a second set of translation parameters
p2 is found which align M̂ to the key model M̃ . This reduces spa-
tial drift in the model. The two sets of translation parameters are
summed to determine the final translation parameters p that specify
the location of the target and the next model M̂t+1

Template update, described in Section 2.2, is executed every N

frames, and allows the key model M̃ to change over time in a manner
that limits spatial drift yet allows a smooth change in target appear-
ance. Every N frames, the key model is replaced by the best model
from the a set of the previous N models {M̂i}

N
i=1 . The diagram in

Figure 2 illustrates the algorithm with template matching on the left,
and template update on the right.

2.1. Template matching

The goal of template matching is to estimate the transformation pa-
rameters p = {p1 . . . pn} that best align a reference template T (x)
to an image I(x), where x = (x, y)T is a vector of template co-
ordinates. Borrowing the notation of Baker and Matthews [6], we
assume that W(x;p) warps reference coordinates according to p.
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Fig. 2. Flow chart representation of the proposed method

This problem may then be formulated as a sum of squared differ-
ences (SSD),

p
∗ = argmin

p

X
x

[I(W(x;p)) − T (x)]2 , (1)

where the sum is computed over template coordinates x. We begin
by reforming this expression with the introduction of a step variable
Δp and use a truncated Taylor expansion to separate it from the
warp:

=
X
x

[I(W(x;p + Δp)) − T (x)]2 (2)

≈
X
x

[I(W(x;p)) + ∇I ·
∂W

∂p
·Δp − T (x)]2. (3)

We now take the gradient with respect toΔp and rearrange terms to
yield the step solution:

Δp =
X
x

H
−1

»
∇I ·

∂W

∂p

–T

[T (x) − I(W(x;p))] (4)

whereH is the n × n Hessian matrix:

H =
X
x

»
∇I ·

∂W

∂p

–T »
∇I ·

∂W

∂p

–
. (5)

If we examine the Hessian matrix, we notice that the terms that
most effect its computation are those with large image gradient ∇I .
These coordinate locations X ⊆ I contain the most information af-
fecting the transformation parameters p. As suggested by Dellaert
and Collins [7], using only this subset of pixels in the computations
can increase speed by orders of magnitude with little loss in accu-
racy. Following this technique, at the start of each iteration, we
compute (4-5) and necessary derivatives only on a dominant sub-
set X. Procedure 1 details the iterative estimation of p as described
in [4, 5].

This process is well suited for arbitrary transformation param-
eters, but we find that allowing more complex transformations than
translation introduces unnecessary degrees of freedom and can lead
to inaccurate registrations. Hence, we take p to be translation in the
x and y direction, and

W(x;p) = x + p (6)

Procedure 1 Registration
Determine dominant subsetX ⊆ I
repeat
Compute I(W(x;p))
Compute residual [T (x) − I(W(x;p))]
Compute ∇I · ∂W

∂p
and form the HessianH as in (5)

Solve forΔp as in (4)
p ← p + Δp

until p has converged

2.2. Template Update

The goal of template update is to allow the appearance of the refer-
ence image to change in order to reduce feature drift while at the
same time preventing spatial drift from entering the system. To
achieve this, the key model M̃ is updated every N frames with the
procedure outlined in Figure 3.

During the template matching step, we collect the past N mod-
els, denoted as {M̂i}

N
i=1. The new key model, M̃k+1 is chosen as

the best representative of this set as determined by a matching error,
e

e(M̂, M̃) = ‖M̂ − M̃‖2 (7)

M̃k M̃k+1

8>>>>><
>>>>>:

e = 469 e = 517 e = 449

· · ·

e = 548

9>>>>>=
>>>>>;

Fig. 3. We update the key model M̃k periodically to prevent feature
drift. The new key model M̃k+1 is selected by choosing a model
from the set {M̂i}

N
i=1 that has the lowest error e when compared to

the previous key model M̃k
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M̃k+1 = argmin
M̂i

e({M̂i}
N

i=1, M̃k) (8)

The set of {M̂i}
N
i=1 represents optimally registered image patches

from the previous N frames, but many will exhibit image noise or
slight misalignments that make them poor choices for a key model.
We choose the new key model to be the candidate with the lowest
matching energy so that the key model changes smoothly without
introducing spatial or feature drift.

Note that the size of the models never varies as the models are
updated. Although we maintain track of the target as it changes in
scale, we do so without changing the size of our representation. This
is accomplished by tracking features available at the current scale of
the target. Hence when the target is small, the key model may in-
clude the entire target, but if the target grows such that it is larger
than the model, the model holds finer details of the target’s appear-
ance that allow the algorithm to maintain its track point.

3. EXPERIMENTS

We applied this tracker to several sequences chosen to demonstrate
robustness against large changes in appearance of the target espe-
cially due to scale change. Additionally, we discuss the parameters
that can affect system performance. Videos from all tracking se-
quences can be found at the author’s web site.1

3.1. Tracking Results

First, consider the LEAVES sequence shown in Figure 4. Here we
use the proposed method to track a small bunch of leaves. In the first
frame, when the track is initialized, the leaves appear very small, and
little detail can be seen. Over the course of the video, the camera
approaches the leaves and their size and detail level increase dramat-
ically. Three full frames are shown with the tracking result on the
first row of Figure 4. Rows two and three show models, M̂t from
selected frames. Notice how the information in the model adapts to
represent features specific to the current scale of the target. The pro-
posed method maintains a stable track point on the front-most leaf
throughout the sequence.

In Figure 5 tracking results for the VEHICLE sequence are shown.
This tactical imagery shows a vehicle being tracked starting from a
very far distance and closing quickly until the target becomes very
large in the frame. In the initial frames, the target is barely visible,
and can only be seen in the zoomed-in models shown in the second
and third rows of the figure. The model adapts to the changing size
of the target, and the sequence is accurately tracked despite the large
scale and appearance change.

The BOAT sequence demonstrates the robustness of the tech-
nique against factors besides scale change in Figure 6. The size
change of the target is not as drastic as those in Figures 4 and 5, but
this sequence exhibits poor resolution, sporadic illumination changes,
significant image noise, and significant target variability due to crash-
ing waves and the varying pose of the boat. Figure 6 shows three full
size frames with tracking result, and eight models from throughout
the sequence.

3.2. Parameters

The proposed method has two parameters which control its behav-
ior: percentage of pixels used as the dominant subset X ⊆ I in the

1http://www.shawnlankton.com

First, middle, and last tracked frame

Model at frames 28, 55, 81, and 108

Model at frames 134, 161, 187, and 214

Fig. 4. Tracking results on the LEAVES sequence demonstrating
ability to track through large scale change. First row: selected full-
size frames. Second and third row: target models from selected
frames throughout the sequence.

registration procedure (Section 2.1) and the length, N of the history
used for key model updates (Section 2.2).

First, we discuss the pixel percentage used in registration. Us-
ing fewer pixels increases the speed of the algorithm significantly.
It can also increase the accuracy of registration in some cases. In
the BOAT sequence, the background water is noisy and low contrast.
If 100% of the pixels are used in registration for this sequence, re-
sults are not as accurate due to many ambiguous background pixels
being included in the registration. We use 25% of pixels with good
results. Alternatively, in the LEAVES sequence the background is
very high-contrast. In this case using only a small percentage of the
pixels can cause the template matching step to favor registration to
the background instead of the target. In this imagery, we use 100%
of the pixels to ensure the object is tracked despite the high contrast
background.

The second parameter of interest is the length N of the model
history used during the template update step. This parameter must be
set to reflect how quickly the target is expected to change in appear-
ance. For instance, in the LEAVES sequence, the target undergoes a
large appearance and scale change very quickly. For this experiment
we use a relatively short history of N = 5. In the VEHICLE and
BOAT sequences, the target changes more slowly, and a history of 20
frames is used.

3.3. Efficiency

Finally, we point out the efficiency inherent in this algorithm. Other
methods that are capable of tracking objects though scale changes
may continuously change the size of their tracking window to in-
clude the entire object. Hence, the number of pixels analyzed in or-
der to localize the target increases with target size. This increase can
lead to slower frame rates when the target appears large. Because our
algorithm uses a fixed window size and updates the features tracked
within that window, the frame rate remains roughly constant despite
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First, middle, and last tracked frame

Model at frames 60, 118, 175, and 233

Model at frames 291, 349, 406, and 464

Fig. 5. Tracking results on the VEHICLE sequence demonstrating
ability to track through large scale change. First row: selected full-
size frames. Second and third row: target models from selected
frames throughout the sequence.

changes in target size. Furthermore, the simplicity of the algorithm
allows it to run at real time speeds. In our prototype Matlab imple-
mentation we achieve speeds between 17 and 26 Hz. Table 1 shows
the frame rates achieved for each of the three experiments shown.

Table 1. Frame rates achieved during experiments

Sequence Figure Frame Rate
LEAVES 4 17.54 Hz
VEHICLE 5 25.46 Hz
BOAT 6 24.62 Hz

4. CONCLUSION AND FUTUREWORK

We have shown a novel tracking algorithm capable of tracking tar-
gets through significant changes in size and appearance. By using a
two-phase template matching scheme and an intelligent template up-
date procedure, the system can prevent spatial drift and feature drift
in order to maintain accurate track. Furthermore, the efficiency of
the algorithm makes it useful for real-time applications.

Future work may include using robust estimators rather than sum
of squared differences to determine correlation between models and
targets as well expanding the current approach into a particle filtering
framework to make the system more robust against extremely erratic
target motion.
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