117 research outputs found
Edge and bulk states in Weyl-orbit quantum Hall effect as studied by Corbino measurements
We investigate edge and bulk states in Weyl-orbit based quantum Hall effect
by measuring a Corbino-type device fabricated from a topological Dirac
semimetal (Cd1-xZnx)3As2 film. Clear quantum Hall plateaus are observed when
measuring one-sided terminals of the Corbino-type device. This indicates that
edge states of the Weyl-orbit quantum Hall effect form closed trajectories
consisting of Fermi arcs and chiral zero modes independently on inner and outer
sides. On the other hand, the bulk resistance does not diverge at fields where
the quantum Hall plateau appears, suggesting that the Weyl orbits in the bulk
region are not completely localized when applying electric current through the
bulk region
Experimental and numerical study of full-scale scissor type bridge
Mobile Bridgeβ’ is a deployable bridge that uses a scissors mechanism to achieve its useful structural form. The bridge has a compact size in its undeployed state and can be transported easily to where it is needed. Its rapid deployment makes this type of bridge very useful in areas struck by natural disasters by enabling vehicles to cross terrain that has been made impassable. In previous research, experiments and analyses were conducted on a small-scale bridge designed for pedestrians. In order to consider a bridge of increased size, it is necessary to assess whether design and analysis techniques of the small scale bridge are applicable to the full-scale one. In this paper, we consider a full-scale deployable bridge with a lower deck and two scissor units, that allows for a light vehicle to pass across. We have carried out a light vehicle loading test in order to investigate its basic structural characteristics. Furthermore, the paper presents the theoretical design method and numerical models based on the experimental work followed by validation and comparison with the obtained experimental values
Mucus glycoproteins selectively secreted from bacteriocytes in gill filaments of the deep-sea clam Calyptogena okutanii
The deep-sea clam Calyptogena okutanii possesses a large gill containing vertically transmitted symbiotic sul-fur-oxidizing bacteria. It produces large amounts of highly viscoelastic mucus from the gill, which is thought to be a physical and chemical barrier. The mucus collected from the gill was shown to be composed of glycoproteins having the following sugar composition: Man (17.4%), GlcNAc (16.6%), GalNAc (15%), Glc (1.1%), Gal (29.9%), Xyl (3.0%), Fuc (14.4%), and unknown (2.6%), indicating that it contained mucin-like glycoproteins. In a monoclonal antibody li-brary against the gill tissue, we found a monoclonal antibody (mAb), CokG-B3C10, reacting to the mucus. Western blot analysis using the mAb showed that it reacted to several glycoproteins in the mucus from the gill tissue, but not with those of other tissues such as the mantle, foot, and ovary, where mucus production has been reported in bivalves. Fur-ther, immunohistochemical analysis showed the CokG-B3C10 mAb reacting to glycoproteins was detected in the inner area of the gill, which was occupied by many bacteriocytes in the row of gill filaments. Strong mAb signals were found on the outer surface of the bacteriocytes facing the interfilamental space, and in the interfilamental spaces between filaments. Weaker signals were also observed in the bacteriocyte cells. These results indicate that the CokG-B3C10 mAb-binding mucus glycoproteins were produced from cells including bacteriocytes and nonbacteriocyte cells in the inner area of the gill filaments.http://www.godac.jamstec.go.jp/darwin/cruise/natsushima/nt09-06_leg1/ehttp://www.godac.jamstec.go.jp/darwin/cruise/natsushima/nt10-01/ehttp://www.godac.jamstec.go.jp/darwin/cruise/natsushima/nt10-08/
The p250GAP Gene Is Associated with Risk for Schizophrenia and Schizotypal Personality Traits
BACKGROUND: Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits. METHODS: We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire. RESULTS: We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (Ο(2) = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (Ο(2) = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F(1,178) = 4.08, p = 0.045), particularly the interpersonal factor (F(1,178) = 5.85, p = 0.017). DISCUSSION: These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia
Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (βΌ0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases
Shared and Distinct Functions of the Transcription Factors IRF4 and IRF8 in Myeloid Cell Development
Interferon regulatory factor (IRF) 8 and IRF4 are structurally-related, hematopoietic cell-specific transcription factors that cooperatively regulate the differentiation of dendritic cells and B cells. Whilst in myeloid cells IRF8 is known to modulate growth and differentiation, the role of IRF4 is poorly understood. In this study, we show that IRF4 has activities similar to IRF8 in regulating myeloid cell development. The ectopic expression of IRF4 in myeloid progenitor cells in vitro inhibits cell growth, promotes macrophages, but hinders granulocytic cell differentiation. We also show that IRF4 binds to and activates transcription through the IRF-Ets composite sequence (IECS). Furthermore, we demonstrate that Irf8-/-Irf4-/- mice exhibit a more severe chronic myeloid leukemia (CML)-like disease than Irf8-/- mice, involving a disproportionate expansion of granulocytes at the expense of monocytes/macrophages. Irf4-/- mice, however, display no obvious abnormality in myeloid cell development, presumably because IRF4 is expressed at a much lower level than IRF8 in granulocyte-macrophage progenitors. Our results also suggest that IRF8 and IRF4 have not only common but also specific activities in myeloid cells. Since the expression of both the IRF8 and IRF4 genes is downregulated in CML patients, these results may add to our understanding of CML pathogenesis
Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders
Intracellular trafficking of receptor proteins is essential for neurons to detect various extracellular factors during the formation and refinement of neural circuits. However, the precise mechanisms underlying the trafficking of neurotrophin receptors to synapses remain elusive. Here, we demonstrate that a brain-enriched sorting nexin, ARHGAP33, is a new type of regulator for the intracellular trafficking of TrkB, a high-affinity receptor for brain-derived neurotrophic factor. ARHGAP33 knockout (KO) mice exhibit reduced expression of synaptic TrkB, impaired spine development and neuropsychiatric disorder-related behavioural abnormalities. These deficits are rescued by specific pharmacological enhancement of TrkB signalling in ARHGAP33 KO mice. Mechanistically, ARHGAP33 interacts with SORT1 to cooperatively regulate TrkB trafficking. Human ARHGAP33 is associated with brain phenotypes and reduced SORT1 expression is found in patients with schizophrenia. We propose that ARHGAP33/SORT1-mediated TrkB trafficking is essential for synapse development and that the dysfunction of this mechanism may be a new molecular pathology of neuropsychiatric disorders
- β¦