1,454 research outputs found

    The Industrial Organization of the Japanese Bar: Levels and Determinants of Attorney Income

    Get PDF
    Using micro-level data on attorney incomes in 2004, we reconstruct the industrial organization of the Japanese legal services industry. These data suggest a somewhat bifurcated bar, with two sources of unusually high income: talent in Tokyo, and scarcity elsewhere. The most talented would-be lawyers (those with the highest opportunity costs) pass the bar-exam equivalent on one of their first tries or abandon the effort. If they pass, they tend to opt for careers in Tokyo that involve complex litigation and business transactions. This work places a premium on their talent, and from it they earn appropriately high incomes. The less talented face lower opportunity costs, and willingly spend many years studying for the exam. If they eventually pass, they disproportionately forego the many amenities available to professional families in Tokyo and opt instead for careers in the under-lawyered provinces. There, they earn scarcity and monopoly rents not available in the far more competitive Tokyo market.lawyers; Japan

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Macroscopic limit of a solvable dynamical model

    Get PDF
    The interaction between an ultrarelativistic particle and a linear array made up of NN two-level systems (^^ ^^ AgBr" molecules) is studied by making use of a modified version of the Coleman-Hepp Hamiltonian. Energy-exchange processes between the particle and the molecules are properly taken into account, and the evolution of the total system is calculated exactly both when the array is initially in the ground state and in a thermal state. In the macroscopic limit (N→∞N \rightarrow \infty), the system remains solvable and leads to interesting connections with the Jaynes-Cummings model, that describes the interaction of a particle with a maser. The visibility of the interference pattern produced by the two branch waves of the particle is computed, and the conditions under which the spin array in the N→∞N \rightarrow \infty limit behaves as a ^^ ^^ detector" are investigated. The behavior of the visibility yields good insights into the issue of quantum measurements: It is found that, in the thermodynamical limit, a superselection-rule space appears in the description of the (macroscopic) apparatus. In general, an initial thermal state of the ^^ ^^ detector" provokes a more substantial loss of quantum coherence than an initial ground state. It is argued that a system decoheres more as the temperature of the detector increases. The problem of ^^ ^^ imperfect measurements" is also shortly discussed.Comment: 30 pages, report BA-TH/93-13

    On the Courant-Fischer theory for Krein spaces

    Get PDF
    http://www.sciencedirect.com/science/article/B6V0R-4V462G8-2/2/25c16be9e99d2fbaa89b7c1a6a47e95

    Live imaging of whole mouse embryos during gastrulation : migration analyses of epiblast and mesodermal cells

    Get PDF
    During gastrulation in the mouse embryo, dynamic cell movements including epiblast invagination and mesodermal layer expansion lead to the establishment of the three-layered body plan. The precise details of these movements, however, are sometimes elusive, because of the limitations in live imaging. To overcome this problem, we developed techniques to enable observation of living mouse embryos with digital scanned light sheet microscope (DSLM). The achieved deep and high time-resolution images of GFP-expressing nuclei and following 3D tracking analysis revealed the following findings: (i) Interkinetic nuclear migration (INM) occurs in the epiblast at embryonic day (E)6 and 6.5. (ii) INM-like migration occurs in the E5.5 embryo, when the epiblast is a monolayer and not yet pseudostratified. (iii) Primary driving force for INM at E6.5 is not pressure from neighboring nuclei. (iv) Mesodermal cells migrate not as a sheet but as individual cells without coordination

    Curvature effect on nuclear pasta: Is it helpful for gyroid appearance?

    Full text link
    In supernova cores and neutron star crusts, nuclei are thought to deform to rodlike and slablike shapes, which are often called nuclear pasta. We study the equilibrium properties of the nuclear pasta by using a liquid drop model with curvature corrections. It is confirmed that the curvature effect acts to lower the transition densities between different shapes. We also examine the gyroid structure, which was recently suggested as a different type of nuclear pasta by analogy with the polymer systems. The gyroid structure investigated in this paper is approximately formulated as an extension of the periodic minimal surface whose mean curvature vanishes. In contrast to our expectations, we find from the present approximate formulation that the curvature corrections act to slightly disfavor the appearance of the gyroid structure. By comparing the energy corrections in the gyroid phase and the hypothetical phases composed of d-dimensional spheres, where d is a general dimensionality, we show that the gyroid is unlikely to belong to a family of the generalized dimensional spheres.Comment: 14 pages, 8 figure

    Exponential behavior of a quantum system in a macroscopic medium

    Get PDF
    An exponential behavior at all times is derived for a solvable dynamical model in the weak-coupling, macroscopic limit. Some implications for the quantum measurement problem are discussed, in particular in connection with dissipation.Comment: 8 pages, report BA-TH/94-17

    Spectral resolution of the Liouvillian of the Lindblad master equation for a harmonic oscillator

    Full text link
    A Lindblad master equation for a harmonic oscillator, which describes the dynamics of an open system, is formally solved. The solution yields the spectral resolution of the Liouvillian, that is, all eigenvalues and eigenprojections are obtained. This spectral resolution is discussed in depth in the context of the biorthogonal system and the rigged Hilbert space, and the contribution of each eigenprojection to expectation values of physical quantities is revealed. We also construct the ladder operators of the Liouvillian, which clarify the structure of the spectral resolution.Comment: 22pages, no figure; title changed, minor corrections, references added; minor correction

    Initial wave packets and the various power-law decreases of scattered wave packets at long times

    Full text link
    The long time behavior of scattered wave packets ψ(x,t)\psi (x,t) from a finite-range potential is investigated, by assuming ψ(x,t)\psi (x,t) to be initially located outside the potential. It is then shown that ψ(x,t)\psi (x,t) can asymptotically decrease in the various power laws at long time, according to its initial characteristics at small momentum. As an application, we consider the square-barrier potential system and demonstrate that ψ(x,t)\psi (x,t) exhibits the asymptotic behavior t−3/2t^{-3/2}, while another behavior like t−5/2t^{-5/2} can also appear for another ψ(x,t)\psi (x,t).Comment: 5 pages, 1 figur

    Stability and instability in parametric resonance and quantum Zeno effect

    Get PDF
    A quantum mechanical version of a classical inverted pendulum is analyzed. The stabilization of the classical motion is reflected in the bounded evolution of the quantum mechanical operators in the Heisenberg picture. Interesting links with the quantum Zeno effect are discussed.Comment: 6 pages, 3 figure
    • 

    corecore