32 research outputs found

    早期糖尿病性腎症での腎臓におけるα-Klotho 発現の低下とその尿中カルシウム排世に対する役割についての検討

    Get PDF
    Hypercalciuria is one of the early manifestations of diabetic nephropathy. We explored here the role of α-Klotho, a protein expressed predominantly in distal convoluted tubules that has a role in calcium reabsorption. We studied 31 patients with early diabetic nephropathy and compared them with 31 patients with IgA nephropathy and 7 with minimal change disease. Renal α-Klotho expression was significantly lower and urinary calcium excretion (UCa/UCr) significantly higher in diabetic nephropathy than in IgA nephropathy or minimal change disease. Multiple regression analyses indicated that α-Klotho mRNA was inversely correlated with calcium excretion. We next measured these parameters in a mouse model of streptozotocin (STZ)-induced diabetic nephropathy, characterized by glomerular hyperfiltration, as seen in early diabetic nephropathy. We also confirmed a reduction of renal α-Klotho mRNA down to almost 50% and enhanced calcium excretion in mice with STZ-induced diabetic nephropathy in comparison with nondiabetic mice. Hypercalciuria was exacerbated in heterozygous α-Klotho knockout mice in comparison with wild-type mice, each with STZ-induced diabetic nephropathy. Thus, α-Klotho expression was decreased in distal convoluted tubules in diabetic nephropathy in humans and mice. Renal loss of α-Klotho may affect urinary calcium excretion in early diabetic nephropathy.博士(医学)・乙第1293号・平成24年5月28日© 2012 International Society of Nephrolog

    慢性腎臓病では血中可溶型fms様チロシンキナーゼ-1産生の減少が動脈硬化症を悪化させる

    Get PDF
    Patients with chronic kidney disease (CKD) die of cardiovascular diseases for unknown reasons. Blood vessel formation in plaques and its relationship with plaque stability could be involved with signaling through the Flt-1 receptor and its ligands, vascular endothelial growth factor, and the closely related placental growth factor (PlGF). Flt-1 also exists as a circulating regulatory splice variant short-inhibitory form (sFlt-1) that serves as a decoy receptor, thereby inactivating PlGF. Heparin releases sFlt-1 by displacing the sFlt-1 heparin-binding site from heparin sulfate proteoglycans. Heparin could provide diagnostic inference or could also induce an antiangiogenic state. In the present study, postheparin sFlt-1 levels were lower in CKD patients than in control subjects. More importantly, sFlt-1 levels were inversely related to atherosclerosis in CKD patients, and this correlation was more robust after heparin injection, as verified by subsequent cardiovascular events. Knockout of apolipoprotein E (ApoE) and/or sFlt-1 showed that the absence of sFlt-1 worsened atherogenesis in ApoE-deficient mice. Thus, the relationship between atherosclerosis and PlGF signaling, as regulated by sFlt-1, underscores the underappreciated role of heparin in sFlt-1 release. These clinical and experimental data suggest that novel avenues into CKD-dependent atherosclerosis and its detection are warranted.博士(医学)・甲614号・平成26年3月17

    Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects

    Get PDF
    Background α-Klotho (αKl) regulates mineral metabolism such as calcium ion (Ca2+) and inorganic phosphate (Pi) in circulation. Defects in mice result in clinical features resembling disorders found in human aging. Although the importance of transmembrane-type αKl has been demonstrated, less is known regarding the physiological importance of soluble-type αKl (sαKl) in circulation. Objectives The aims of this study were: (1) to establish a sandwich ELISA system enabling detection of circulating serum sαKl, and (2) to determine reference values for sαKl serum levels and relationship to indices of renal function, mineral metabolism, age and sex in healthy subjects. Results We successively developed an ELISA to measure serum sαKl in healthy volunteers (n = 142, males 66) of ages (61.1 ± 18.5 year). The levels (mean ± SD) in these healthy control adults were as follows: total calcium (Ca; 9.46 ± 0.41 mg/dL), Pi (3.63 ± 0.51 mg/dL), blood urea nitrogen (BUN; 15.7 ± 4.3 mg/dL), creatinine (Cre; 0.69 ± 0.14 mg/dL), 1,25 dihydroxyvitamin D (1,25(OH)2D; 54.8 ± 17.7 pg/mL), intact parathyroid hormone (iPTH; 49.2 ± 20.6 pg/mL), calcitonin (26.0 ± 12.3 pg/mL) and intact fibroblast growth factor (FGF23; 43.8 ± 17.6 pg/mL). Serum levels of sαKl ranged from 239 to 1266 pg/mL (mean ± SD; 562 ± 146 pg/mL) in normal adults. Although sαKl levels were not modified by gender or indices of mineral metabolism, sαKl levels were inversely related to Cre and age. However, sαKl levels in normal children (n = 39, males 23, mean ± SD; 7.1 ± 4.8 years) were significantly higher (mean ± SD; 952 ± 282 pg/mL) than those in adults (mean ± SD; 562 ± 146, P < 0.001). A multivariate linear regression analysis including children and adults in this study demonstrated that sαKl correlated negatively with age and Ca, and positively with Pi. Finally, we measured a serum sαKl from a patient with severe tumoral calcinosis derived from a homozygous missense mutation of α-klotho gene. In this patient, sαKl level was notably lower than those of age-matched controls. Conclusion We established a detection system to measure human serum sαKl for the first time. Age, Ca and Pi seem to influence serum sαKl levels in a normal population. This detection system should be an excellent tool for investigating sαKl functions in mineral metabolism

    Renoprotective effects of extracellular fibroblast specific protein 1 via nuclear factor erythroid 2-related factor-mediated antioxidant activity

    No full text
    Abstract Podocyte expression of fibroblast specific protein 1 (FSP1) is observed in various types of human glomerulonephritis. Considering that FSP1 is secreted extracellularly and has been shown to have multiple biological effects on distant cells, we postulated that secreted FSP1 from podocytes might impact renal tubules. Our RNA microarray analysis in a tubular epithelial cell line (mProx) revealed that FSP1 induced the expression of heme oxygenase 1, sequestosome 1, solute carrier family 7, member 11, and cystathionine gamma-lyase, all of which are associated with nuclear factor erythroid 2-related factor (Nrf2) activation. Therefore, FSP1 is likely to exert cytoprotective effects through Nrf2-induced antioxidant activity. Moreover, in mProx, FSP1 facilitated Nrf2 translocation to the nucleus, increased levels of reduced glutathione, inhibited the production of reactive oxygen species (ROS), and reduced cisplatin-induced cell death. FSP1 also ameliorated acute tubular injury in mice with cisplatin nephrotoxicity, which is a representative model of ROS-mediated tissue injury. Similarly, in transgenic mice that express FSP1 specifically in podocytes, tubular injury associated with cisplatin nephrotoxicity was also mitigated. Extracellular FSP1 secreted from podocytes acts on downstream tubular cells, exerting renoprotective effects through Nrf2-mediated antioxidant activity. Consequently, podocytes and tubular epithelial cells have a remote communication network to limit injury

    Suppression of experimental lupus nephritis by aberrant expression of the soluble E-selectin gene

    No full text
    Circulating leukocytes, particularly neutrophils and monocytes, are important effector cells in the induction of many forms of glomerulonephritis. Adhesion molecules, especially selectins, are also thought to be critical for the development of this disease. We examined the possible suppressive effect of soluble E-selectin on the development of experimental lupus nephritis induced by the injection of a hybridoma clone (2B11.3) derived from an MRL/MpJ-lpr/lpr lupus mouse. This clone produces IgG3 antibodies that induce severe proliferative glomerulonephritis resembling lupus nephritis when injected into normal mice. Transgenic mice with a soluble E-selectin gene were injected intraperitoneally with the hybridoma cells and histopathologically examined on day 15. As a result, the development of glomerulonephritis was significantly suppressed. This suppression was characterized by fewer inflammatory cell infiltrates, compared with non-transgenic litter mates, despite the fact that there were no remarkable differences in immunoglobulin deposits or expression of E-selectin between the two groups. These findings suggest that by controlling inflammatory cell infiltration, soluble E-selectin plays a preventative role in the development of a particular type of lupus nephritis

    Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism.

    Get PDF
    Renal α-Klotho (α-KL) plays a fundamental role as a co-receptor for fibroblast growth factor 23 (FGF23), a phosphaturic hormone and regulator of 1,25(OH)2 vitamin D3 (1,25VitD3). Disruption of FGF23-α-KL signaling is thought to be an early hallmark of chronic kidney disease (CKD) involving reduced renal α-KL expression and a reciprocal rise in serum FGF23. It remains unclear, however, whether the rise in FGF23 is related to the loss of renal α-KL. We evaluated α-KL expression in renal biopsy samples and measured levels of several parameters of mineral metabolism, as well as soluble α-KL (sKL), in serum and urinary samples from CKD patients (n = 236). We found that although renal α-KL levels were significantly reduced and serum FGF23 levels were significantly elevated in early and intermediate CKD, serum phosphate levels remained within the normal range. Multiple regression analysis showed that the increases in FGF23 were significantly associated with reduced renal function and elevated serum phosphate, but were not associated with loss of renal α-KL. Moreover, despite falling renal α-KL levels, the increase in FGF23 enhanced urinary fractional excretion of phosphate and reduced serum 1,25VitD3 levels in early and intermediate CKD, though not in advanced CKD. Serum sKL levels also fell significantly over the course of CKD, and renal α-KL was a significant independent determinant of sKL. These results demonstrate that FGF23 levels rise to compensate for renal failure-related phosphate retention in early and intermediate CKD. This enables FGF23-α-KL signaling and a neutral phosphate balance to be maintained despite the reduction in α-KL. In advanced CKD, however, renal α-KL declines further. This disrupts FGF23 signaling, and serum phosphate levels significantly increase, stimulating greater FGF23 secretion. Our results also suggest the serum sKL concentration may be a useful marker of renal α-KL expression levels

    Clinical mineral metabolism parameters in patients with CKD.

    No full text
    <p>(A) Serum corrected calcium concentrations (white bars) and inorganic phosphate concentrations (black bars). (B) Serum 1,25VitD<sub>3</sub> concentrations. (C) Serum intact PTH concentrations. (D) Serum FGF23 concentrations. Data are shown as means ± S.D. Tukey's Honestly Significant Difference (HSD) post hoc test with Bonferroni's adjustment was used to compare groups: #1, <i>P</i><0.005 vs. stage 1; #2, <i>P</i><0.005 vs. stage 2; #3, <i>P</i><0.005 vs. stage 3; #4, <i>P</i><0.005 vs. stage 4.</p

    Correlation between serum FGF23 and renal α-Klotho (α-KL) in CKD patients.

    No full text
    <p>(A–D) Serum FGF23 concentration plotted against renal α-KL level in CKD patients at stage 1 (A), 2 (B), 3 (C) and 4–5 (D). Correlations were evaluated using Pearson's correlation coefficient.</p
    corecore