24 research outputs found

    Mucosal Healing in Ulcerative Colitis: A Comprehensive Review

    Get PDF
    Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by periods of remission and periods of relapse. Patients often present with symptoms such as rectal bleeding, diarrhea and weight loss, and may require hospitalization and even colectomy. Long-term complications of UC include decreased quality of life and productivity and an increased risk of colorectal cancer. Mucosal healing (MH) has gained progressive importance in the management of UC patients. In this article, we review the endoscopic findings that define both mucosal injury and MH, and the strengths and limitations of the scoring systems currently available in clinical practice. The basic mechanisms behind colonic injury and MH are covered, highlighting the pathways through which different drugs exert their effect towards reducing inflammation and promoting epithelial repair. A comprehensive review of the evidence for approved drugs for UC to achieve and maintain MH is provided, including a section on the pharmacokinetics of anti-tumor necrosis factor (TNF)-alpha drugs. Currently approved drugs with proven efficacy in achieving MH in UC include salicylates, corticosteroids (induction only), calcineurin inhibitors (induction only), thiopurines, vedolizumab and anti-TNF alpha drugs (infliximab, adalimumab, and golimumab). MH is of crucial relevance in the outcomes of UC, resulting in lower incidences of clinical relapse, the need for hospitalization and surgery, as well as reduced rates of dysplasia and colorectal cancer. Finally, we present recent evidence towards the need for a more strict definition of complete MH as the preferred endpoint for UC patients, using a combination of both endoscopic and histological findings.info:eu-repo/semantics/publishedVersio

    Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    Get PDF
    Background: Middle age obesity is recognized as a risk factor for Alzheimer’s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings: To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance: Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-a and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokin

    LC–MS Analysis of Polyclonal Human Anti-Neu5Gc Xeno-Autoantibodies Immunoglobulin G Subclass and Partial Sequence Using Multistep Intravenous Immunoglobulin Affinity Purification and Multienzymatic Digestion

    No full text
    Human polyclonal IgG antibodies directly against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) are potential biomarkers and mechanistic contributors to cancer and other diseases associated with chronic inflammation. Using a sialoglycan microarray, we screened the binding pattern of such antibodies (anti-Neu5Gc IgG) in several samples of clinically-approved human IVIG (IgG). These results were used to select an appropriate sample for a multi-step affinity purification of the xeno-autoantibody fraction. The sample was then analyzed via our multi-enzyme digestion procedure followed by nanoLC coupled to LTQ-FTMS. We used characteristic and unique peptide sequences to determine the IgG subclass distribution and thus provided direct evidence that all four IgG subclasses can be generated during a xeno-autoantibody immune response to carbohydrate Neu5Gc-antigens. Furthermore, we obtained a significant amount of sequence coverage of both the constant and variable regions. The approach described here, therefore, provides a way to characterize these clinically significant antibodies, helping to understand their origins and significance

    Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: Potential implications for disease

    No full text
    Human heterophile antibodies that agglutinate animal erythrocytes are known to detect the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc). This monosaccharide cannot by itself fill the binding site (paratope) of an antibody and can also be modified and presented in various linkages, on diverse underlying glycans. Thus, we hypothesized that the human anti-Neu5Gc antibody response is diverse and polyclonal. Here, we use a novel set of natural and chemoenzymatically synthesized glycans to show that normal humans have an abundant and diverse spectrum of such anti-Neu5Gc antibodies, directed against a variety of Neu5Gc-containing epitopes. High sensitivity and specificity assays were achieved by using N-acetylneuraminic acid (Neu5Ac)-containing probes (differing from Neu5Gc by one less oxygen atom) as optimal background controls. The commonest anti-Neu5Gc antibodies are of the IgG class. Moreover, the range of reactivity and Ig classes of antibodies vary greatly amongst normal humans, with some individuals having remarkably large amounts, even surpassing levels of some well-known natural blood group and xenoreactive antibodies. We purified these anti-Neu5Gc antibodies from individual human sera using a newly developed affinity method and showed that they bind to wild-type but not Neu5Gc-deficient mouse tissues. Moreover, they bind back to human carcinomas that have accumulated Neu5Gc in vivo. As dietary Neu5Gc is primarily found in red meat and milk products, we suggest that this ongoing antigen-antibody reaction may generate chronic inflammation, possibly contributing to the high frequency of diet-related carcinomas and other diseases in humans
    corecore