423 research outputs found

    Catalyst deactivation of a silica-supported bismuth-molybdenum complex oxide and the related complex oxides for the oxidative dehydrogenation of 1-butene to 1,3-butadiene

    Get PDF
    This study was an examination of the catalyst deactivation of a silica-supported bismuth-molybdenum complex oxide, and that of catalysts used in the absence of bismuth, for the oxidative dehydrogenation of 1-butene. Due to the detection of deactivation, the molar ratio of 1-butene against oxygen in the reactant gas was adjusted to a ratio similar to that used in industrial processes where reaction temperatures average 100 K higher. Regardless of the presence or absence of bismuth in the catalysts, the conversion of 1-butene was decreased by 6 h on-stream. Both the progress of the coking from the inlet to the outlet of the catalyst and the reduction of molybdenum in the catalysts directly contributed to the deactivation. X-ray photoelectron spectrometry revealed that a greater reduction of molybdenum in the near-surface region and a smaller partial pressure of oxygen (P(O2)) in the reactant gas, although the molybdenum on the surface was not reduced at all. This indicated that the lattice oxygen was pumped from the near-surface region to the surface during the reaction and the oxygen-poor conditions of the near-surface region both in the gas and catalyst phases were formed at a smaller P(O2), which resulted in the enhancements of both the reduction of molybdenum and that of coking. Based on the thermogravimetric analysis, the silica-supported bismuth-molybdenum complex oxide used at P(O2) = 4.1 kPa (color of the catalyst = black) was increased in weight while that used at P(O2) = 16.4 kPa (color of the catalyst = gray) showed a weight decrease, which indicated that the weight decrease caused by the reduction in molybdenum in the near-surface region used at 4.1 kPa was greater than the weight increase from the coking. It was concluded that the reduction in molybdenum followed by the coking on the catalyst surface were the main factors in the catalyst deactivation

    Imaging findings of granulocyte colony-stimulating factor-producing tumors: a case series and review of the literature

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF)-producing tumors have an aggressive clinical course. Here, we report five cases of G-CSF-producing tumors and review the literature, focusing on imaging findings related to tumor-produced G-CSF. In addition to our cases, we identified 30 previous reports of G-CSF-producing tumors on which 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT, bone scintigraphy, or evaluation of bone marrow MR findings was performed. White blood cell count, serum C-reactive protein, and serum interleukin-6 were elevated in all cases for which these parameters were measured. G-CSF-producing tumors presented large necrotic masses (mean diameter 83.2 mm, range 17–195 mm) with marked FDG uptake (mean maximum standardized uptake value: 20.09). Diffuse FDG uptake into the bone marrow was shown in 28 of the 31 cases in which FDG-PET/CT was performed. The signal intensity of bone marrow suggested marrow reconversion in all seven MRI-assessable cases. Bone scintigraphy demonstrated no significant uptake, except in two cases with bone metastases. Splenic FDG uptake was increased in 8 of 10 cases in which it was evaluated. These imaging findings may reflect the effects of tumor-produced G-CSF. The presence of G-CSF-producing tumors should be considered in patients with cancer who show these imaging findings and marked inflammatory features of unknown origin
    corecore