84 research outputs found

    Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability

    Get PDF
    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability

    Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility

    Get PDF
    BioHEAs, specifically designed high entropy alloy (HEA) systems for biomedical applications, represent a new era for biometals. However, recent challenges are (1) the poor shape customizability, and (2) the inevitable severe segregation due to the intrinsic fact that HEA is an ultra-multicomponent alloy system. To achieve shape customization and suppression of elemental segregation simultaneously, we used an extremely high cooling rate (~107 K/s) of the selective laser melting (SLM) process. We, for the first time, developed pre-alloyed Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA powders and SLM-built parts with low porosity, customizable shape, excellent yield stress, and good biocompatibility. The SLM-built specimens showed drastically suppressed elemental segregation compared to the cast counterpart, representing realization of a super-solid solution. As a result, the 0.2% proof stress reached 1690 ± 78 MPa, which is significantly higher than that of cast Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 (1140 MPa). The SLM-built Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 BioHEA is promising as a next-generation metallic material for biomedical applications.Ishimoto T., Ozasa R., Nakano K., et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scripta Materialia, 194, 113658. https://doi.org/10.1016/j.scriptamat.2020.113658

    Manifestation of Headache Affecting Quality of Life in Long COVID Patients

    Get PDF
    Objectives: The present study aimed to elucidate the characteristics of long COVID patients with headaches. Methods: A single-center retrospective observational study was performed for long COVID outpatients who visited our hospital from 12 February 2021 to 30 November 2022. Results: A total of 482 long COVID patients, after excluding 6, were divided into two groups: the Headache group of patients with complaints of headache (113 patients: 23.4%) and the remaining Headache-free group. Patients in the Headache group were younger (median age: 37 years) than patients in the Headache-free group (42 years), while the ratio of females (56%) in the Headache group was nearly the same as that in the Headache-free group (54%). The proportion of patients in the Headache group who were infected in the Omicron-dominant phase (61%) was larger than the proportions of patients infected in the Delta (24%) and preceding (15%) phases, and that trend was significantly different from the trend in the Headache-free group. The duration before the first visit for long COVID was shorter in the Headache group (71 days) than in the Headache-free group (84 days). The proportions of patients in the Headache group with comorbid symptoms, including general fatigue (76.1%), insomnia (36.3%), dizziness (16.8%), fever (9.7%), and chest pain (5.3%) were larger than the proportions of patients in the Headache-free group, whereas blood biochemical data were not significantly different between the two groups. Interestingly, patients in the Headache group had significant deteriorations of scores indicating depression and scores for quality of life and general fatigue. In multivariate analysis, headache, insomnia, dizziness, lethargy, and numbness were shown to be involved in the quality of life (QOL) of long COVID patients. Conclusions: The manifestation of headaches related to long COVID was found to have a significant impact on social and psychological activities. Alleviation of headaches should be a priority for the effective treatment of long COVID

    Two Relapsed Stage III Childhood Anaplastic Large Cell Lymphoma Patients with NPM-ALK Fusion in Bone Marrow from Initial Diagnosis

    Get PDF
    Childhood anaplastic large cell lymphoma (ALCL) accounts for approx. 10–30 of cases of non-Hodgkin lymphoma, and the ALCL99 study reported 60–75 disease-free survival; however, a relatively high relapse rate was observed (25–30 ). We report 2 patients with Stage III ALCL who relapsed 6–18 months after the end of ALCL99 chemotherapy. A retrospective molecular analysis identified the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) fusion gene in the first diagnostic bone marrow samples taken from both patients. However, antibodies against the ALK protein appeared to be relatively low in the serum of both patients (×100 and ×750). An increase in chemotherapy intensity may be beneficial if Stage III ALCL patients are shown to be NPM-ALK chimera-positive in the first diagnostic bone marrow sample

    Two Relapsed Stage III Childhood Anaplastic Large Cell Lymphoma Patients with NPM-ALK Fusion in Bone Marrow from Initial Diagnosis

    Get PDF
    Childhood anaplastic large cell lymphoma (ALCL) accounts for approx. 10–30 of cases of non-Hodgkin lymphoma, and the ALCL99 study reported 60–75 disease-free survival; however, a relatively high relapse rate was observed (25–30 ). We report 2 patients with Stage III ALCL who relapsed 6–18 months after the end of ALCL99 chemotherapy. A retrospective molecular analysis identified the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) fusion gene in the first diagnostic bone marrow samples taken from both patients. However, antibodies against the ALK protein appeared to be relatively low in the serum of both patients (×100 and ×750). An increase in chemotherapy intensity may be beneficial if Stage III ALCL patients are shown to be NPM-ALK chimera-positive in the first diagnostic bone marrow sample

    Optimised atmospheric pressure CVD of monoclinic VO2 thin films with picosecond phase transition

    Get PDF
    Monoclinic vanadium oxide (VO2) thin films with low roughness values were deposited and optimised by atmospheric pressure chemical vapour deposition using vanadium tetrachloride (VCl4) and water (H2O). Smooth VO2 films with good transmittance properties were successfully produced on fluorine doped tin oxide/borosilicate substrates. Systematic investigations confirmed that the quality (including phase) of films being produced strongly depended on substrate, deposition time, temperature, and precursor ratio within the process. Optical characterisation using ellipsometry revealed a strong thermochromic response of the films with a large change in the dielectric function, while time-resolved pump-probe transmission showed the picosecond nature of the phase transition

    Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03002, doi:10.1029/2012JG001949.Until recently, the process of denitrification (conversion of nitrate or nitrite to gaseous products) was thought to be performed exclusively by prokaryotes and fungi. The finding that foraminifera perform complete denitrification could impact our understanding of nitrate removal in sediments as well as our understanding of eukaryotic respiration, especially if it is widespread. However, details of this process and the subcellular location of these reactions in foraminifera remain uncertain. For example, prokaryotic endobionts, rather than the foraminifer proper, could perform denitrification, as has been shown recently in an allogromiid foraminifer. Here, intracellular nitrate concentrations and isotope ratios (δ15NNO3 and δ18ONO3) were measured to assess the nitrate dynamics in four benthic foraminiferal species (Bolivina argentea, Buliminella tenuata, Fursenkoina cornuta, Nonionella stella) with differing cellular architecture and associations with microbial endobionts, recovered from Santa Barbara Basin, California. Cellular nitrate concentrations were high (12–217 mM) in each species, and intracellular nitrate often had elevated δ15NNO3 and δ18ONO3 values. Experiments including suboxic and anoxic incubations of B. argentea revealed a decrease in intracellular nitrate concentration and an increase in δ15NNO3 and δ18ONO3 over time, indicating nitrate respiration and/or denitrification within the foraminifera. Results illustrate that nitrate reduction occurs in a range of foraminiferal species, including some possessing endobionts (including a chloroplast-sequestering species) and others lacking endobionts, implying that microbial associates may not solely be responsible for this process in foraminifera. Furthermore, we show that benthic foraminifera may represent important reservoirs of nitrate storage in sediments, as well as mediators of its removal.This research was supported by NSF grant EF-0702491 to JMB, KLC, and VPE.2013-01-0

    Diminished Medial Prefrontal Activity behind Autistic Social Judgments of Incongruent Information

    Get PDF
    Individuals with autism spectrum disorders (ASD) tend to make inadequate social judgments, particularly when the nonverbal and verbal emotional expressions of other people are incongruent. Although previous behavioral studies have suggested that ASD individuals have difficulty in using nonverbal cues when presented with incongruent verbal-nonverbal information, the neural mechanisms underlying this symptom of ASD remain unclear. In the present functional magnetic resonance imaging study, we compared brain activity in 15 non-medicated adult males with high-functioning ASD to that of 17 age-, parental-background-, socioeconomic-, and intelligence-quotient-matched typically-developed (TD) male participants. Brain activity was measured while each participant made friend or foe judgments of realistic movies in which professional actors spoke with conflicting nonverbal facial expressions and voice prosody. We found that the ASD group made significantly less judgments primarily based on the nonverbal information than the TD group, and they exhibited significantly less brain activity in the right inferior frontal gyrus, bilateral anterior insula, anterior cingulate cortex/ventral medial prefrontal cortex (ACC/vmPFC), and dorsal medial prefrontal cortex (dmPFC) than the TD group. Among these five regions, the ACC/vmPFC and dmPFC were most involved in nonverbal-information-biased judgments in the TD group. Furthermore, the degree of decrease of the brain activity in these two brain regions predicted the severity of autistic communication deficits. The findings indicate that diminished activity in the ACC/vmPFC and dmPFC underlies the impaired abilities of individuals with ASD to use nonverbal content when making judgments regarding other people based on incongruent social information

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore