6 research outputs found
Continuous Repetition Motor Imagery Training and Physical Practice Training Exert the Growth of Fatigue and Its Effect on Performance
Continuous repetition of motor imagery leads to mental fatigue. This study aimed to examine whether fatigue caused by motor imagery training affects improvement in performance and the change in corticospinal excitability. The participants were divided into “physical practice training” and “motor imagery training” groups, and a visuomotor task (set at 50% of maximal voluntary contraction in participants) was performed to assess the training effect on fatigue. The measurements were recorded before and after training. Corticospinal excitability at rest was measured by transcranial magnetic stimulation according to the Neurophysiological Index. Subjective mental fatigue and muscle fatigue were assessed by using the visual analog scale and by measuring the pinch force, respectively. Additionally, the error area was evaluated and calculated at pre-, mid-, and post-terms after training, using a visuomotor task. After training, muscle fatigue, subjective mental fatigue, and decreased corticospinal excitability were noted in both of the groups. Moreover, the visuomotor task decreased the error area by training; however, there was no difference in the error area between the mid- and post-terms. In conclusion, motor imagery training resulted in central fatigue by continuous repetition, which influenced the improvement in performance in the same manner as physical practice training
Corticospinal excitability during motor imagery is diminished by continuous repetition-induced fatigue
Application of continuous repetition of motor imagery can improve the performance of exercise tasks. However, there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards for interventions using motor imagery. Moreover, identification of motor imagery intervention time is necessary because it exhibits possible central fatigue. Therefore, the purpose of this study was to elucidate the development of fatigue during continuous repetition of motor imagery through objective and subjective evaluation. The study involved two experiments. In experiment 1, 14 healthy young volunteers were required to imagine grasping and lifting a 1.5-L plastic bottle using the whole hand. Each participant performed the motor imagery task 100 times under each condition with 48 hours interval between two conditions: 500 mL or 1500 mL of water in the bottle during the demonstration phase. Mental fatigue and a decrease in pinch power appeared under the 1500-mL condition. There were changes in concentration ability or corticospinal excitability, as assessed by motor evoked potentials, between each set with continuous repetition of motor imagery also under the 1500-mL condition. Therefore, in experiment 2, 12 healthy volunteers were required to perform the motor imagery task 200 times under the 1500-mL condition. Both concentration ability and corticospinal excitability decreased. This is the first study to show that continuous repetition of motor imagery can decrease corticospinal excitability in addition to producing mental fatigue. This study was approved by the Institutional Ethics Committee at the Nagasaki University Graduate School of Biomedical and Health Sciences (approval No. 18121302) on January 30, 2019
Changing Artificial Playback Speed and Real Movement Velocity Do Not Differentially Influence the Excitability of Primary Motor Cortex during Observation of a Repetitive Finger Movement
Action observation studies have investigated whether changing the speed of the observed movement affects the action observation network. There are two types of speed-changing conditions; one involves \u27‘changes in actual movement velocity,\u27\u27 and the other is \u27‘manipulation of video speed.\u27\u27 Previous studies have investigated the effects of these conditions separately, but to date, no study has directly investigated the differences between the effects of these conditions. In the \u27‘movement velocity condition,\u27\u27 increased velocity is associated with increased muscle activity; however, this change of muscle activities is not shown in the \u27‘video speed condition.\u27\u27 Therefore, a difference in the results obtained under these conditions could be considered to reflect a difference in muscle activity of actor in the video. The aim of the present study was to investigate the effects of different speed-changing conditions and spontaneous movement tempo (SMT) on the excitability of primary motor cortex (M1) during action observation, as assessed by motor-evoked potentials (MEPs) amplitudes induced by transcranial magnetic stimulation (TMS). A total of 29 healthy subjects observed a video clip of a repetitive index or little finger abduction movement under seven different speed conditions. The video clip in the movement velocity condition showed repetitive finger abduction movements made in time with an auditory metronome, at frequencies of 0.5, 1, 2, and 3 Hz. In the video speed condition, playback of the 1-Hz movement velocity condition video clip was modified to show movement frequencies of 0.5, 2, or 3 Hz (Hz-Fake). TMS was applied at the time of maximal abduction and MEPs were recorded from two right-hand muscles. There were no differences in M1 excitability between the movement velocity and video speed conditions. Moreover, M1 excitability did not vary across the speed conditions for either presentation condition. Our findings suggest that changing playback speed and actual differences in movement velocity do not differentially influence M1 excitability during observation of a simple action task, such as repetitive finger movement, and that it is not affected by SMT. In simple and meaningless observational task, people might not be able to recognize the difference in muscle activity of actor in the video
Primary Motor Cortex Activation during Action Observation of Tasks at Different Video Speeds Is Dependent on Movement Task and Muscle Properties
The aim of the present study was to investigate how the video speed of observed action affects the excitability of the primary motor cortex (M1), as assessed by the size of motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS). Twelve healthy subjects observed a video clip of a person catching a ball (Experiment 1: rapid movement) and another 12 healthy subjects observed a video clip of a person reaching to lift a ball (Experiment 2: slow movement task). We played each video at three different speeds (slow, normal and fast). The stimulus was given at two points of timing in each experiment. These stimulus points were locked to specific frames of the video rather than occurring at specific absolute times, for ease of comparison across different speeds. We recorded MEPs from the first dorsal interosseous muscle (FDI) and abductor digiti minimi muscle (ADM) of the right hand. MEPs were significantly different for different video speeds only in the rapid movement task. MEPs for the rapid movement task were higher when subjects observed an action played at slow speed than normal or fast speed condition. There was no significant change for the slow movement task. Video speed was effective only in the ADM. Moreover, MEPs in the ADM were significantly higher than in the FDI in a rapid movement task under the slow speed condition. Our findings suggest that the M1 becomes more excitable when subjects observe the video clip at the slow speed in a rapid movement, because they could recognize the elements of movement in others. Our results suggest the effects of manipulating the speed of the viewed task on the excitability of the M1 during passive observation differ depending on the type of movement task observed. It is likely that rehabilitation in the clinical setting will be more efficient if the video speed is changed to match the task\u27s characteristics