3,651 research outputs found

    A Blockchain-based Approach for Data Accountability and Provenance Tracking

    Full text link
    The recent approval of the General Data Protection Regulation (GDPR) imposes new data protection requirements on data controllers and processors with respect to the processing of European Union (EU) residents' data. These requirements consist of a single set of rules that have binding legal status and should be enforced in all EU member states. In light of these requirements, we propose in this paper the use of a blockchain-based approach to support data accountability and provenance tracking. Our approach relies on the use of publicly auditable contracts deployed in a blockchain that increase the transparency with respect to the access and usage of data. We identify and discuss three different models for our approach with different granularity and scalability requirements where contracts can be used to encode data usage policies and provenance tracking information in a privacy-friendly way. From these three models we designed, implemented, and evaluated a model where contracts are deployed by data subjects for each data controller, and a model where subjects join contracts deployed by data controllers in case they accept the data handling conditions. Our implementations show in practice the feasibility and limitations of contracts for the purposes identified in this paper

    A Spectrophotometric Method to Determine the Inclination of Class I Objects

    Full text link
    A new method which enables us to estimate the inclination of Class I young stellar objects is proposed. Since Class I objects are not spherically symmetric, it is likely that the observed feature is sensitive to the inclination of the system. Thus, we construct a protostar model by carefully treating two-dimensional (2D) radiative transfer and radiative equilibrium. We show from the present 2D numerical simulations that the emergent luminosity L_SED,which is the frequency integration of spectral energy distribution (SED), depends strongly on the inclination of the system i, whereas the peak flux is insensitive to i. Based on this result, we introduce a novel indicator f_L, which is the ratio of L_SED to the peak flux, as a good measure for the inclination. By using f_L, we can determine the inclination regardless of the other physical parameters. The inclination would be determined by f_L within the accuracy of +- 5 degree, if the opening angle of bipolar outflows is specified by any other procedure. Since this spectrophotometric method is easier than a geometrical method or a full SED fitting method, this method could be a powerful tool to investigate the feature of protostars statistically with observational data which will be provided by future missions, such as SIRTF, ASTRO-F, and ALMA.Comment: 14 pages, 9 figures, accepted by Ap

    Living with Oxygen

    Get PDF
    Work on the electronic structures of metal–oxo complexes began in Copenhagen over 50 years ago. This work led to the prediction that tetragonal multiply bonded transition metal–oxos would not be stable beyond the iron–ruthenium–osmium oxo wall in the periodic table and that triply bonded metal–oxos could not be protonated, even in the strongest Brþnsted acids. In this theory, only double bonded metal–oxos could attract protons, with basicities being a function of the electron donating ability of ancillary ligands. Such correlations of electronic structure with reactivity have gained importance in recent years, most notably owing to the widespread recognition that high-valent iron–oxos are intermediates in biological reactions critical to life on Earth. In this Account, we focus attention on the oxygenations of inert organic substrates by cytochromes P450, as these reactions involve multiply bonded iron–oxos. We emphasize that P450 iron–oxos are strong oxidants, so strong that they would destroy nearby amino acids if substrates are not oxygenated rapidly; it is our view that these high-valent iron–oxos are such dangerous reactive oxygen species that Nature surely found ways to disable them. Looking more deeply into this matter, mainly by examining many thousands of structures in the Protein Data Bank, we have found that P450s and other enzymes that require oxygen for function have chains of tyrosines and tryptophans that extend from active-site regions to protein surfaces. Tyrosines are near the heme active sites in bacterial P450s, whereas tryptophan is closest in most human enzymes. High-valent iron–oxo survival times taken from hole hopping maps range from a few nanoseconds to milliseconds, depending on the distance of the closest Trp or Tyr residue to the heme. In our proposed mechanism, multistep hole tunneling (hopping) through Tyr/Trp chains guides the damaging oxidizing hole to the protein surface, where it can be quenched by soluble protein or small molecule reductants. As the Earth’s oxygenic atmosphere is believed to have developed about 2.5 billion years ago, the increase in occurrence frequency of tyrosine and tryptophan since the last universal evolutionary ancestor may be in part a consequence of enzyme protective functions that developed to cope with the environmental toxin, O_2

    Irreducible Triangulations are Small

    Get PDF
    A triangulation of a surface is \emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus g≄1g\geq1 has at most 13g−413g-4 vertices. The best previous bound was 171g−72171g-72.Comment: v2: Referees' comments incorporate

    Socially Optimal Mining Pools

    Full text link
    Mining for Bitcoins is a high-risk high-reward activity. Miners, seeking to reduce their variance and earn steadier rewards, collaborate in pooling strategies where they jointly mine for Bitcoins. Whenever some pool participant is successful, the earned rewards are appropriately split among all pool participants. Currently a dozen of different pooling strategies (i.e., methods for distributing the rewards) are in use for Bitcoin mining. We here propose a formal model of utility and social welfare for Bitcoin mining (and analogous mining systems) based on the theory of discounted expected utility, and next study pooling strategies that maximize the social welfare of miners. Our main result shows that one of the pooling strategies actually employed in practice--the so-called geometric pay pool--achieves the optimal steady-state utility for miners when its parameters are set appropriately. Our results apply not only to Bitcoin mining pools, but any other form of pooled mining or crowdsourcing computations where the participants engage in repeated random trials towards a common goal, and where "partial" solutions can be efficiently verified

    Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs

    Get PDF
    ObjectivesPatients undergoing osteoporosis treatment benefit greatly from early detection. We previously developed a computer-aided diagnosis (CAD) system to identify osteoporosis using panoramic radiographs. However, the region of interest (ROI) was relatively small, and the method to select suitable ROIs was labor-intensive. This study aimed to expand the ROI and perform semi-automatized extraction of ROIs. The diagnostic performance and operating time were also assessed.MethodsWe used panoramic radiographs and skeletal bone mineral density data of 200 postmenopausal women. Using the reference point that we defined by averaging 100 panoramic images as the lower mandibular border under the mental foramen, a 400x100-pixel ROI was automatically extracted and divided into four 100x100-pixel blocks. Valid blocks were analyzed using program 1, which examined each block separately, and program 2, which divided the blocks into smaller segments and performed scans/analyses across blocks. Diagnostic performance was evaluated using another set of 100 panoramic images.ResultsMost ROIs (97.0%) were correctly extracted. The operation time decreased to 51.4% for program 1 and to 69.3% for program 2. The sensitivity, specificity, and accuracy for identifying osteoporosis were 84.0, 68.0, and 72.0% for program 1 and 92.0, 62.7, and 70.0% for program 2, respectively. Compared with the previous conventional system, program 2 recorded a slightly higher sensitivity, although it occasionally also elicited false positives.ConclusionsPatients at risk for osteoporosis can be identified more rapidly using this new CAD system, which may contribute to earlier detection and intervention and improved medical care

    Shock-Wave Heating Model for Chondrule Formation: Prevention of Isotopic Fractionation

    Get PDF
    Chondrules are considered to have much information on dust particles and processes in the solar nebula. It is naturally expected that protoplanetary disks observed in present star forming regions have similar dust particles and processes, so study of chondrule formation may provide us great information on the formation of the planetary systems. Evaporation during chondrule melting may have resulted in depletion of volatile elements in chondrules. However, no evidence for a large degree of heavy-isotope enrichment has been reported in chondrules. In order to meet this observed constraint, the rapid heating rate at temperatures below the silicate solidus is required to suppress the isotopic fractionation. We have developed a new shock-wave heating model taking into account the radiative transfer of the dust thermal continuum emission and the line emission of gas molecules and calculated the thermal history of chondrules. We have found that optically-thin shock waves for the thermal continuum emission from dust particles can meet the rapid heating constraint, because the dust thermal emission does not keep the dust particles high temperature for a long time in the pre-shock region and dust particles are abruptly heated by the gas drag heating in the post-shock region. We have also derived the upper limit of optical depth of the pre-shock region using the radiative diffusion approximation, above which the rapid heating constraint is not satisfied. It is about 1 - 10.Comment: 58 pages, including 5 tables and 15 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore