48 research outputs found
Cephalopods Between Science, Art, and Engineering: A Contemporary Synthesis
ABSTRACT Cephalopods are outstanding animals. For centuries, they have provided a rich source of inspiration to many aspects of human cultures, from art, history, media and spiritual beliefs to the most exquisite scientific curiosity. Given their high esthetical value and 'mysteriously' rich behavioral repertoire they have functioned as boundary objects (or subjects) connecting seemingly distinct thematic fields. Interesting aspects of their being span from the rapid camouflaging ability inspiring contemporary art practices, to their soft and fully muscular body that curiously enough inspired both gastronomy and (soft) robotics. The areas influenced by cephalopods include ancient mythology, art, behavioural science, neuroscience, genomics, camouflage technology and bespoken robotics. Although these might seem far related fields, in this manuscript we want to show how the increasing scientific and popular interest in this heterogeneous class of animals have indeed prompted a high level of integration between scientific, artistic and sub-popular culture. We will present an overview of the birth and life of cephalopod investigations from the traditional study of ethology, neuroscience, and biodiversity to the more recent and emerging field of genomics, material industry and soft robotics. Within this framework, we will attempt to capture the current interest and progress in cephalopod scientific research that lately met both the public interest and the 'liberal arts' curiosity
The role of virtual-assisted lung mapping 2.0 combining microcoils and dye marks in deep lung resection
Objectives: Virtual-assisted lung mapping 2.0 is a novel preoperative bronchoscopic lung mapping technique combining the multiple dye marks of conventional virtual-assisted lung mapping with intrabronchial microcoils to navigate thoracoscopic deep lung resection. This study's purpose was to evaluate the feasibility of virtual-assisted lung mapping 2.0 in resecting deeply located pulmonary nodules with adequate margins.
Methods: A multicenter, prospective single-arm study was performed from 2019 to 2020 in 8 institutions. The selection criteria were barely identifiable nodules requiring sublobar lung resections, nodules requiring resection lines reaching the inner 2/3 of the pulmonary lobe on computed tomography images in wedge resection, or the nodule center located in the inner 2/3 of the pulmonary lobe in wedge resection or segmentectomy. Resection margins larger than 2 cm or the nodule diameter were considered successful resection. Bronchoscopic placement of multiple dye marks and microcoil(s) was conducted 0 to 2 days before surgery.
Results: We analyzed 65 lesions in 64 patients. The diameter and depth of the targeted nodules and the minimum required resection depth reported as median (interquartile range) were 9 (7-13) mm, 11 (5-15) mm, and 30 (25-35) mm, respectively. Among 60 wedge resections and 5 segmentectomies, successful resection was achieved in 64 of 65 resections (98.5%; 95% confidence interval, 91.7-100). Among 75 microcoils placed, 3 showed major displacement after bronchoscopic placement. There were no severe adverse events associated with the virtual-assisted lung mapping procedure.
Conclusions: This study demonstrated that virtual-assisted lung mapping 2.0 can facilitate successful resections for deep pulmonary nodules, overcoming the limitations of conventional virtual-assisted lung mapping
Squid adjust their body color according to substrate
Coleoid cephalopods camouflage on timescales of seconds to match their visual surroundings. To date, studies of cephalopod camouflage-to-substrate have been focused primarily on benthic cuttlefish and octopus, because they are readily found sitting on the substrate. In contrast to benthic cephalopods, oval squid (Sepioteuthis lessoniana species complex) are semi-pelagic animals that spend most of their time in the water column. In this study, we demonstrate that in captivity, S. lessoniana Sp.2 (Shiro-ika, white-squid) from the Okinawa archipelago, Japan, adapts the coloration of their skin using their chromatophores according to the background substrate. We show that if the animal moves between substrates of different reflectivity, the body patterning is changed to match. Chromatophore matching to substrate has not been reported in any loliginid cephalopod under laboratory conditions. Adaptation of the chromatophore system to the bottom substrate in the laboratory is a novel experimental finding that establishes oval squid as laboratory model animals for further research on camouflage
Photodynamic diagnostic ureteroscopy using the VISERA ELITE video system for diagnosis of upper-urinary tract urothelial carcinoma: a prospective cohort pilot study
Background The advantages of photodynamic diagnostic technology using 5-aminolevulinic acid (ALA-PDD) have been established. The aim of this prospective cohort study was to evaluate the usefulness of ALA-PDD to diagnose upper tract urothelial carcinoma (UT-UC) using the Olympus VISERA ELITE video system. Methods We carried out a prospective, interventional, non-randomized, non-contrast and open label cohort pilot study that involved patients who underwent ureterorenoscopy (URS) to detect UT-UC. 5-aminolevulinic acid hydrochloride was orally administered before URS. The observational results and pathological diagnosis with ALA-PDD and traditional white light methods were compared, and the proportion of positive subjects and specimens were calculated. Results A total of 20 patients were enrolled and one patient who had multiple bladder tumors did not undergo URS. Fifteen of 19 patients were pathologically diagnosed with UT-UC and of these 11 (73.3%) were ALA-PDD positive. Fourteen of 19 patients were ALA-PDD positive and of these 11 were pathologically diagnosed with UC. For the 92 biopsy specimens that were malignant or benign, the sensitivity for both traditional white light observation and ALA-PDD was the same at 62.5%, whereas the specificities were 73.1% and 67.3%, respectively. Of the 38 specimens that were randomly biopsied without any abnormality under examination by both white light and ALA-PDD, 11 specimens (28.9%) from 5 patients were diagnosed with high grade UC. In contrast, four specimens from 4 patients, which were negative in traditional white light observation but positive in ALA-PDD, were diagnosed with carcinoma in situ (CIS). Conclusions Our results suggest that ALA-PDD using VISERA ELITE is not sufficiently applicable for UT-UC. Nevertheless, it might be better particularly for CIS than white light and superior results would be obtained using VISERA ELITE II video system. Trial registration: The present clinical study was approved by the Okayama University Institutional Review Board prior to study initiation (Application no.: RIN 1803-002) and was registered with the UMIN Clinical Trials Registry (UMIN-CTR), Japan (Accession no.: UMIN000031205)
Status of 48Ca double beta decay search in CANDLES
We study a strategy to reduce veto-time in the search for neutrino-less double-beta decay (0υββ) with CANDLES-III system. We develop a new likelihood analysis and apply it to our new Run010 data. We show that we can increase the un-vetoed live-time by 11.8%. Thanks to this improvements, We expect to increase a limit on the life-time of 0υββ by a factor of three by analyzing both Run009 and Run010 data
Feasibility of Human Neural Stem Cell Transplantation for the Treatment of Acute Subdural Hematoma in a Rat Model: A Pilot Study
Human neural stem cells (hNSCs) transplantation in several brain injury models has established their therapeutic potential. However, the feasibility of hNSCs transplantation is still not clear for acute subdural hematoma (ASDH) brain injury that needs external decompression. Thus, the aim of this pilot study was to test feasibility using a rat ASDH decompression model with two clinically relevant transplantation methods. Two different methods, in situ stereotactic injection and hNSC-embedded matrix seating on the brain surface, were attempted. Athymic rats were randomized to uninjured or ASDH groups (F344/NJcl-rnu/rnu, n = 7–10/group). Animals in injury group were subjected to ASDH, and received decompressive craniectomy and 1-week after decompression surgery were transplanted with green fluorescent protein (GFP)-transduced hNSCs using one of two approaches. Histopathological examinations at 4 and 8 weeks showed that the GFP-positive hNSCs survived in injured brain tissue, extended neurite-like projections resembling neural dendrites. The in situ transplantation group had greater engraftment of hNSCs than matrix embedding approach. Immunohistochemistry with doublecortin, NeuN, and GFAP at 8 weeks after transplantation showed that transplanted hNSCs remained as immature neurons and did not differentiate toward to glial cell lines. Motor function was assessed with rotarod, compared to control group (n = 10). The latency to fall from the rotarod in hNSC in situ transplanted rats was significantly higher than in control rats (median, 113 s in hNSC vs. 69 s in control, P = 0.02). This study first demonstrates the robust engraftment of in situ transplanted hNSCs in a clinically-relevant ASDH decompression rat model. Further preclinical studies with longer study duration are warranted to verify the effectiveness of hNSC transplantation in amelioration of TBI induced deficits
Upgrading of shielding for rare decay search in CANDLES
In the CANDLES experiment aiming to search for the very rare neutrino-less double beta decays (0νββ) using 48Ca, we introduced a new shielding system for high energy γ-rays from neutron captures in massive materials near the detector, in addition to the background reduction for 232Th decays in the 0νββ target of CaF2 crystals. The method of background reduction and the performance of newly installed shielding system are described
Status of 48Ca double beta decay search and its future prospect in CANDLES
CANDLES(CAlcium fluoride for the study of Neutrinos and Dark matters by Low Energy Spectrometer) is the experiment to search for the neutrino-less double beta decay(0vββ) of 48Ca with CaF2 scintillator. 48Ca has the highest Qββ-value (4.3 MeV) among all isotope candidates for 0vββ. It enables us to measure signals with very low background condition. After rejection analysis with 131 days × 86 kg data for background events from radioactive contaminations in the CaF2 scintillators, no events are observed in the Qββ-value region. As a result, the 0vββ half-life of 48Ca is greater than 6.2 × 1022 yr (90% confidence level). For further high sensitive measurement of 48Ca 0vββ search, we have been developing the 48Ca enrichment and CaF2 scintillating bolometer techniques. In this paper, the latest result for CANDLES and the status of scintillating bolometer development are described
Development of CANDLES Low Background HPGe Detector and Half-life Measurement of 180Tam
A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature’s most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved
Observations of schooling behaviour in the oval squid Sepioteuthis lessoniana in coastal waters of Okinawa Island
The schooling behaviour of the oval squid Sepioteuthis lessoniana was observed over 4 summers at 3 observation sites in the coastal waters of Okinawa Island, Ryukyu Archipelago, Japan. During this field study, 3 static appearances (belt, ball and sheet shape) and 2 transitional appearances (high and low density) were noted, recorded and described. In addition to formations, a member of S. lessoniana schools also displayed particular and repeated behavioural patterns such as vanguard and intimidating display. The 3 observation sites were tropical coral reefs near the coastline at a depth of 1 to 15 m on an average. All participating observers snorkelled and were equipped with various underwater digital video and photographic cameras. The schools observed consisted of 8 to over 100 members with a wide range of body sizes. Despite these biological and locational differences, both static and transitional appearances were consistently observed with equally consistent individual behavioural patterns. There have been studies on related species, Sepioteuthis sepioidea, at the San Blas Islands along the Caribbean coast of eastern Panama, and the same species, S. lessoniana, at a different geographical location, Casuarina Beach on Lizard Island, Australia. The findings of this study are consistent with those reported previously, with some notable differences