135 research outputs found

    Land of the Falling “Poison Pill : Understanding Defensive Measures in Japan on Their Own Terms

    Get PDF
    Embraced by United States (“U.S.”) managers in the 1980s as a lifeline in a sea of hostile takeovers, the poison pill fundamentally altered the trajectory of American corporate governance. When a hostile takeover wave seemed imminent in Japan in the mid-2000s, Japanese boards appeared to embrace this American invention with equal enthusiasm. Japan's experience should have been a ringing endorsement for the utility of American corporate governance solutions in foreign jurisdictions-but it was not to be. Japan's unique interpretation of the “poison pill” that was so eagerly adopted by Japanese companies in the mid-to-late 2000s has turned out to be nothing like their potent American namesakes-and, in fact, the opposite of what would be expected by leading U.S. academics who have built a cottage industry publishing on the U.S. poison pill. Based on hand collected empirical data, we provide the first in-depth analysis of why Japan’s “poison pill” (defensive measures) is heading towards extinction—a watershed reversal that is unexplained in the Japanese literature and has almost entirely escaped the English language literature. By drawing on our hand-collected data, case studies, and Japanese jurisprudence, we illuminate the unique and untold story of how one of the most discussed mechanisms of corporate governance in the U.S. has worked almost entirely differently when transplanted to Japanese soil—the importance of which is heightened as Japan is by far the largest economy in which the poison pill has been tested outside of the United States. Additionally, our analysis sheds light on the unexpected importance of Japan’s recently implemented corporate governance code and stewardship code—two Western legal transplants that have garnered considerable attention in the English language literature, but which have yet to be evaluated in light of their impact on defensive measures in Japan.Published versionThis work was financially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid JP18K01336 and by the Centre for Asian Legal Studies at NUS Law

    Deep-sea borehole seismological observatories in the western Pacific: temporal variation of seismic noise level and event detection

    Get PDF
    Seismological networks provide critical data for better understanding the dynamics of the Earth; however, a great limitation on existing networks is the uneven distribution of stations. In order to achieve a more uniform distribution of seismic stations, observatories must be constructed in marine areas. The best configuration for oceanic seismic observatories is thought to be placement of seismometers in deep boreholes. Two deep-sea borehole seismological observatories (WP-1 and WP-2) were constructed in the western Pacific and form the initial installations of a 1000 km span network. At present, seismic records of more than 400 total days were retrieved from both the WP-1 and WP-2. Long-term variations in broadband seismic noise spectra (3mHz - 10 Hz) in the western Pacific were revealed from these records, and the data showed that ambient seismic noise levels in borehole observatories are comparable to those of the quietest land seismic stations. In addition, there is little temporal variation of noise levels in periods greater than 10 seconds. Due to this low seismic noise environment, many teleseismic events with magnitudes greater than 5 were recorded. It is confirmed that seismic observation in deep-sea borehole gives the best environment for earthquake observation in marine areas

    Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers

    Get PDF
    An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige–Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T0 generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T1 seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T1 generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use

    Is Thermosensing Property of RNA Thermometers Unique?

    Get PDF
    A large number of studies have been dedicated to identify the structural and sequence based features of RNA thermometers, mRNAs that regulate their translation initiation rate with temperature. It has been shown that the melting of the ribosome-binding site (RBS) plays a prominent role in this thermosensing process. However, little is known as to how widespread this melting phenomenon is as earlier studies on the subject have worked with a small sample of known RNA thermometers. We have developed a novel method of studying the melting of RNAs with temperature by computationally sampling the distribution of the RNA structures at various temperatures using the RNA folding software Vienna. In this study, we compared the thermosensing property of 100 randomly selected mRNAs and three well known thermometers - rpoH, ibpA and agsA sequences from E. coli. We also compared the rpoH sequences from 81 mesophilic proteobacteria. Although both rpoH and ibpA show a higher rate of melting at their RBS compared with the mean of non-thermometers, contrary to our expectations these higher rates are not significant. Surprisingly, we also do not find any significant differences between rpoH thermometers from other -proteobacteria and E. coli non-thermometers

    Burden-driven feedback control of gene expression

    Get PDF
    Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable

    The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target

    Get PDF
    Human filarial nematodes are causative agents of elephantiasis and African river blindness, which are among the most debilitating tropical diseases. Currently used drugs mainly affect microfilariae (mf) and have less effect on adult filarial nematodes, which can live in the human host for more than a decade. Filariasis drug control strategy relies on recurrent mass drug administration for many years. Development of novel drugs is also urgently needed due to the threat of drug resistance occurrence. Most filarial worms harbor an obligate endosymbiotic bacterium, Wolbachia, whose presence has been identified as a potential drug target. Comparative genomics had suggested Wolbachia heme biosynthesis as a potential drug target, and we present an analysis of selected enzymes alongside their human homologues from several different aspects—gene phylogenetic analyses, in vitro enzyme kinetic and inhibition assays and heme-deficient E. coli complementation assays. We also conducted ex vivo Brugia malayi viability assays using heme pathway inhibitors. These experiments demonstrate that heme biosynthesis could be critical for filarial worm survival and thus is a potential anti-filarial drug target set

    Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline Development

    Get PDF
    Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant “germline” lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate

    Front Matter

    Get PDF
    The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.This research was supported by the Consejería de Educación, Cultura y Deportes, JCCM, Spain, project CCM17-PIC-036 (SBPLY/17/180501/000185). JJV was supported by Project FIT (Pharmacology, Immunotherapy, nanoToxicology), funded by the European Regional Development Fund.Peer Reviewe

    Target protection as a key antibiotic resistance mechanism

    Get PDF
    Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways
    corecore