149 research outputs found

    Increased isoprostane levels in oleic acid-induced lung injury

    Get PDF
    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2 alpha). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.ArticleBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 388(2):297-300 (2009)journal articl

    Regulation of energy metabolism by interleukin-1 β, but not by interleukin-6, is mediated by nitric oxide in primary cultured rat hepatocytes

    Get PDF
    AbstractThe effects of inflammatory cytokines (interleukin-1 β, interleukin-6, and tumor necrosis factor-α) on energy metabolism were studied in primary cultured rat hepatocytes. Adenine nucleotide (ATP, ADP, and AMP) content, lactate production, the ketone body ratio (acetoacetate/β-hydroxybutyrate) reflecting the liver mitochondrial redox state (NAD+/NADH), and nitric oxide formation were measured. Insulin increased ATP content in hepatocytes and had a maximal effect after 8–12 h of culture. Both interleukin-1β and interleukin-6, but not tumor necrosis factor-α, significantly inhibited the ATP increase time- and dose-dependently. Interleukin-1β and interleukin-6 also stimulated lactate production. During the same period, interleukin-1 β but not interleukin-6 decreased the ketone body ratio. Furthermore, interleukin-1 β markedly stimulated nitric oxide formation in hepatocytes, and this increase was blocked by NG-monomethyl-L-arginine (a nitric oxide synthase inhibitor) and by interleukin-1 receptor antagonist. NG-monomethyl-l-arginine reversed inhibition of the ATP increase, decrease in the ketone body ratio, and increase in lactate production, which were induced by interleukin-lβ. Interleukin-1 receptor antagonist completely abolished all of the effects induced by interleukin-1 β. These results demonstrated that interleukin-1 β and interleukin-6 affect the insulin-induced energy metabolism in rat hepatocytes by different mechanisms. Specifically, interleukin-1 β inhibits ATP synthesis by causing the mitochondrial dysfunction, a process which may be mediated by nitric oxide

    京丹後地区早期高齢者健診(活き生き長寿研究)における認知症スクリーニング

    Get PDF
    京都府立医科大学付属北部医療センター神経内科京都府立医科大学院医学研究科神経内科Department of Neurology, North medical center, Kyoto prefectural university of medicineDepartment of Neurology, Kyoto Prefectural University of Medicine GraduateSchool of Medical Science京都丹後地区の認知機能健診事業「活き生き長寿研究」にて、効率よく認知機能低下を拾い上げるべく独自の認知症スクリーニング(original Dementia Rating:oDR)を用いた。認知症の疑いありの被験者には二次検診で正規版の臨床認知症評価Clinical Dementia Rating-Japan(CDR-J)との比較検証を行なったところ、oDR によるスクリーニングの陽性反応適中度は38 %という結果であった。われわれの健診に用いたoDR は、大規模集団の中で認知機能低下の疑いのある被験者を大まかにスクリーニングするには適しているものの、偽陽性を拾い上げている可能性があり、二次検診の再評価で認知機能低下被験者をさらにふるい分ける必要があると考えた

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence

    Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches

    Get PDF
    Mutations in the fused in sarcoma/translated in liposarcoma gene (FUS/TLS, FUS) have been identified in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). FUS is an RNA-binding protein that is normally localized in the nucleus, but is mislocalized to the cytoplasm in ALS, and comprises cytoplasmic inclusions in ALS-affected areas. However, it is still unknown whether the neurodegeneration that occurs in ALS is caused by the loss of FUS nuclear function, or by the gain of toxic function due to cytoplasmic FUS aggregation. Cabeza (Caz) is a Drosophila orthologue of human FUS. Here, we generated Drosophila models with Caz knockdown, and investigated their phenotypes. In wild-type Drosophila, Caz was strongly expressed in the central nervous system of larvae and adults. Caz did not colocalize with a presynaptic marker, suggesting that Caz physiologically functions in neuronal cell bodies and/or their axons. Fly models with neuron-specific Caz knockdown exhibited reduced climbing ability in adulthood and anatomical defects in presynaptic terminals of motoneurons in third instar larvae. Our results demonstrated that decreased expression of Drosophila Caz is sufficient to cause degeneration of motoneurons and locomotive disability in the absence of abnormal cytoplasmic Caz aggregates, suggesting that the pathogenic mechanism underlying FUS-related ALS should be ascribed more to the loss of physiological FUS functions in the nucleus than to the toxicity of cytoplasmic FUS aggregates. Since the Caz-knockdown Drosophila model we presented recapitulates key features of human ALS, it would be a suitable animal model for the screening of genes and chemicals that might modify the pathogenic processes that lead to the degeneration of motoneurons in ALS
    corecore