13 research outputs found

    Discovery of Negative Superhumps during a Superoutburst of January 2011 in ER Ursae Majoris

    Full text link
    We report on a discovery of "negative" superhumps during the 2011 January superoutburst of ER UMa. During the superoutburst which started on 2011 January 16, we detected negative superhumps having a period of 0.062242(9) d, shorter than the orbital period by 2.2%. No evidence of positive superhumps was detected during this observation. This finding indicates that the disk exhibited retrograde precession during this superoutburst, contrary to all other known cases of superoutbursts. The duration of this superoutburst was shorter than those of ordinary superoutbursts and the intervals of normal outbursts were longer than ordinary ones. We suggest a possibility that such unusual outburst properties are likely a result of the disk tilt, which is supposed to be a cause of negative superhumps: the tilted disk could prevent the disk from being filled with materials in the outmost region which is supposed to be responsible for long-duration superoutbursts in ER UMa-type dwarf novae. The discovery signifies the importance of the classical prograde precession in sustaining long-duration superoutbursts. Furthermore, the presence of pronounced negative superhumps in this system with a high mass-transfer rate favors the hypothesis that hydrodynamical lift is the cause of the disk tilt.Comment: 8 pages, 3 figures, Accepted for publication in PASJ Lette

    Determination of the Effectiveness of Landslide Preventive Engineering Works Using the Electrical Resistivity Method in the Kushibayashi Landslide Area

    Get PDF
    We carried out repeated surveys, using the electrical resistivity method, at each stage of a series of landslide preventive engineering works, as one means of making it possible to operate the necessary works in the most effective way when landslide preventive engineering works were required for the specific purpose of draining the underground water contained in the landslide area. Besides, by carefully weighing our surveyed results obtained at each stage of the preventive engineering works, we proceeded to determine the merits and demerits, or effectiveness, of preventive engineering works at each given stage of operation, and we tried to utilize our surveyed results obtained at given stages in deciding whether there is any necessity of making any adjustments or modifications for forthcoming preventive engineering works

    LONG-TERM PERFORMANCE OF ASPHALT PAVEMENTS AT BIBI NEW TEST ROAD

    No full text

    Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium.

    Get PDF
    Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N(2)-ethylidene-2'-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N(2)-ethylidene-2'-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N(2)-ethylidene-2'-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage
    corecore