1,326 research outputs found

    Correlated Prompt Fission Data in Transport Simulations

    Full text link
    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ\gamma-ray~observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \gray~spectra, angular distributions of the emitted particles, nn-nn, nn-γ\gamma, and γ\gamma-γ\gamma~correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA~and CGMF~codes have been developed to follow the sequential emissions of prompt neutrons and γ\gamma-rays~from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ\gamma~emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ\gamma-ray~strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. (See text for full abstract.)Comment: 39 pages, 57 figure files, published in Eur. Phys. J. A, reference added this versio

    Radiation Protection and Management

    Get PDF

    Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients

    Get PDF
    AIMS: The aldose reductase (AR) gene, a rate-limiting enzyme of the polyol pathway, has been investigated as a candidate gene in determining susceptibility to diabetic microangiopathy. However, the association of the AR gene with diabetic macroangiopathy has not been investigated. Therefore, the present study was conducted to determine whether genetic variations of AR may determine susceptibility to diabetic macroangiopathy. METHODS: There were 378 Type 2 diabetic patients enrolled in this study. A single nucleotide polymorphism in the promoter region (C-106T) was genotyped and the AR protein content of erythrocytes measured by ELISA. RESULTS: There were no significant differences in genotypic or allelic distribution in patients with or without ischaemic heart diseases, but there was a significant increase in the frequency of the CT + TT genotype and T allele in patients with stroke (P = 0.019 and P = 0.012). The erythrocyte AR protein content was increased in patients with the CT and TT genotype compared with those with the CC genotype. After adjustment for age, duration of diabetes, body mass index, systolic blood pressure, HbA(1c), and serum creatinine, triglycerides, and total cholesterol in multivariate logistic-regression models, the association between this AR genotype and stroke remained significant. CONCLUSIONS: Our results suggest that the CT or TT genotype of the AR gene might be a genetic marker of susceptibility to stroke in Type 2 diabetic patients. This observation might contribute to the development of strategies for the prevention of stroke in Type 2 diabetic patients

    Drug review process advancement and required manufacturer and contract research oraganization responses

    Get PDF
    \ua9 2024 The Japanese Society of Toxicologic Pathology.The United States Senate passed the “FDA Modernization Act 2.0.” on September 29, 2022. Although the effectiveness of this Bill, which aims to eliminate the mandatory use of laboratory animals in new drug development, is limited, it represents a significant trend that will change the shape of drug applications in the United States and other countries. However, pharmaceutical companies have not taken major steps towards the complete elimination of animal testing from the standpoint of product safety, where they prioritize patient safety. Nonetheless, society is becoming increasingly opposed to animal testing, and efforts will be made to use fewer animals and conduct fewer animal tests as a natural and reasonable response. These changes eventually alter the shape of new drug applications. Based on the assumption that fewer animal tests will be conducted or fewer animals will be used in testing, this study explored bioinformatics and new technologies as alternatives to compensate for reduced information and provide a picture of how future new drug applications may look. The authors also discuss the directions that pharmaceutical companies and nonclinical contract research organizations should adopt to promote the replacement, reduction, and refinement of animals used in research, teaching, testing, and exhibitions

    Molecular structure and biodegradation kinetics of Linear Alkylbenzene Sulphonates in sea water.

    Get PDF
    The present paper describes the results of the application of the biodegradation test proposed by the United States Environmental Protection Agency (USEPA) “Biodegradability in sea water” Office of Prevention, Pesticides, and Toxic Substances (OPPTS) 835.3160, to Linear Alkylbenzene Sulphonate (LAS), the synthetic surfactant with the highest consumption volume on a world-wide basis. High performance liquid chromatography (HPLC) has been employed for the separation and quantification of the different homologues and isomers of the surfactant. Water from the Bay of Cádiz (South–West of the Iberian peninsula) has been used as test medium. The results indicate how both lag and t50 time shows a significant linear relationship with the length of the alkyl chain of the homologue; the effect of this is that the homologues of longer chain length not only begin to degrade first but also degrade at a faster rate. Regarding the isomeric composition, it is observed that as the percentage of biodegradation increases, there is an increase in the proportion of internal isomers, in comparison with the isomeric relationships of the original test substanc
    corecore