41 research outputs found

    Hypolipidemic and hypoglycemic effects of Orostachys japonicus A. Berger extracts in streptozotocin-induced diabetic rats

    Get PDF
    The hypolipidemic and hypoglycemic effects of two dietary dosages (0.1% and 0.5%) of water and 80% ethanol extracts from hot-air dried Orostachys japonicus A. Berger were evaluated in the serum and organ tissues of streptozotocin-induced diabetic rats. The STZ-induced diabetic groups supplemented with the O. japonicus extracts showed significantly higher body weight compared to a diabetic control group at the end of experiment. The extracts exhibited substantial hypoglycemic effects by significant reductions of fasting blood glucose levels at all time points tested compared to the initial stage before treatment of the extracts. Declines of serum and hepatic triglyceride levels were greater than declines of total cholesterol in the groups treated with the 0.5% O. japonicus extract (DBW2 and DBE2) when compared to the DBC group. Hepatic glycogen content was higher in the groups treated with O. japonicus extract, while lipid peroxide content was decreased in these treated groups compared to the DBC group. Hepatic antioxidant activity was significantly increased in the groups supplemented with the O. japonicus ethanol extract. The hypolipidemic and hypoglycemic effects of the O. japonicus ethanol extract were significantly greater than the effects of the water extract. Based on this study, it seems that O. japonicus ethanol extract, due to its higher phenolic and flavonoid components than the water extract, may control blood glucose and alleviate hyperlipidemia in diabetes

    Toll-like receptor 2 downregulation and cytokine dysregulation predict mortality in patients with Staphylococcus aureus bacteremia

    Get PDF
    Background Staphylococcus aureus bacteremia (SAB) presents heterogeneously, owing to the differences in underlying host conditions and immune responses. Although Toll-like receptor 2 (TLR2) is important in recognizing S. aureus, its function during S. aureus infection remains controversial. We aimed to examine the association of TLR2 expression and associated cytokine responses with clinical SAB outcomes. Methods Patients from a prospective SAB cohort at two tertiary-care medical centers were enrolled. Blood was sampled at several timepoints (≤5 d, 6–9 d, 10–13 d, 14–19 d, and ≥ 20 d) after SAB onset. TLR2 mRNA levels were determined via real-time PCR and serum tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-10 levels were analyzed with multiplex-high-sensitivity electrochemiluminescent ELISA. Results TLR2 levels varied among 59 SAB patients. On days 2–5, TLR2 levels were significantly higher in SAB survivors than in healthy controls (p = 0.040) and slightly but not significantly higher than non-survivors (p = 0.120), and SAB patients dying within 7 d had lower TLR2 levels than survivors (P = 0.077) although statistically insignificant. IL-6 and IL-10 levels were significantly higher in non-survivors than in survivors on days 2–5 post-bacteremia (P = 0.010 and P = 0.021, respectively), and those dying within 7 d of SAB (n = 3) displayed significantly higher IL-10/TNF-α ratios than the survivors did (P = 0.007). Conclusion TLR2 downregulation and IL-6 and IL-10 concentrations suggestive of immune dysregulation during early bacteremia may be associated with mortality from SAB. TLR2 expression levels and associated cytokine reactions during early-phase SAB may be potential prognostic factors in SAB, although larger studies are warranted.This study was supported by a research grant (13–2014-002) from Seoul National University Bundang Hospital (Seongnam, South Korea). The funder had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript

    New Insights into CdS Quantum Dots in Zeolite−Y

    Full text link
    When dry Cd2+-exchanged zeolites Y are exposed to dry H2S under a rigorously anhydrous condition, CdS quantum dots (QDs) are formed in the supercages of zeolite-Y regardless of the loading levels of CdS from 0.01 % to 32 % and regardless of the Si/Al ratio of zeolite-Y between 1.8 and 2.5. The absorptions with the maximums (ìmax) e 290 nm are assigned as those arising from isolated CdS QDs with the sizes smaller than or equal to the size of a supercage (1.3 nm); the absorptions with ìmax between 290 and 380 nm are assigned as those arising from interconnected CdS QDs that were formed by the interconnection of isolated CdS QDs through the supercage windows; and the absorptions with ìmax> 400 nm are assigned as those arising from mesosized (3-10 nm) CdS QDs residing in or on the surfaces of amorphous aluminosilicate. The H+ ions alone, which are generated during the formation of CdS, do not destruct the zeolite-Y framework causing the formation of amorphous aluminosilicate. Instead, the water-induced agglomeration of isolated and interconnected CdS QDs to mesosized CdS QDs in the presence of H+ ions leads to the destruction of the zeolite-Y framework. The size of the interconnected CdS QD which is formed by moisture adsorption increases as the loaded amount of CdS increases for a given zeolite and as the size of the zeolite host increases. The presence of a tetraethylammonium ion in each supercage not only gives rise to the formation of very small QDs within zeolites Y but also prevents the zeolite framework from destruction

    LOMIX, a Mixture of Flaxseed Linusorbs, Exerts Anti-Inflammatory Effects through Src and Syk in the NF-κB Pathway

    No full text
    Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases

    Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In–Ga–Zn–O Active Channels Prepared by Atomic-Layer Deposition

    No full text
    We demonstrated the physical and electrical properties of the In–Ga–Zn–O (IGZO) thin films prepared by atomic-layer deposition (ALD) method and investigated the effects of the ALD temperature. The film composition (atomic ratio of In:Ga:Zn) and film density were examined to be 1:1:3 and 5.9 g/cm<sup>3</sup>, respectively, for all the temperature conditions. The optical band gaps decreased from 3.81 to 3.21 eV when the ALD temperature increased from 130 to 170 °C. The amounts of oxygen-related defects such as oxygen vacancies increased with increasing the ALD temperature. It was found from the in situ temperature-dependent electrical conductivity measurements that the electronic natures including the defect structures and conduction mechanism of the IGZO thin films prepared at different temperatures showed marked variations. The carrier mobilities in the saturation regions (μ<sub>sat</sub>’s) for the fabricated thin film transistors (TFTs) using the IGZO channel layers were estimated to be 6.1 to 14.8 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> with increasing the ALD temperature from 130 to 170 °C. Among the devices, when the ALD temperature was controlled to be 150 °C, the IGZO TFTs showed the best performance, which resulted from the fact that the amounts of oxygen vacancies and interstitial defects could be appropriately modulated at this condition. Consequently, the μ<sub>sat</sub>, subthreshold swing, and on/off ratio for the TFT using the IGZO channel prepared at 150 °C showed 10.4 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, 90 mV/dec, and 2 × 10<sup>9</sup>, respectively. The threshold voltage shifts of this device could also be effectively reduced to be 0.6 and −3.2 V under the positive-bias and negative-bias-illumination stress conditions. These obtained characteristics can be comparable to those for the sputter-deposited IGZO TFTs
    corecore