8 research outputs found

    Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements

    Get PDF
    The small GTPase Ras is frequently mutated in cancer and a driver of tumorigenesis. The recent years have shown great progress in drug-targeting Ras and understanding how it operates on the plasma membrane. We now know that Ras is non-randomly organized into proteo-lipid complexes on the membrane, called nanoclusters. Nanoclusters contain only a few Ras proteins and are necessary for the recruitment of downstream effectors, such as Raf. If tagged with fluorescent proteins, the dense packing of Ras in nanoclusters can be analyzed by Förster/ fluorescence resonance energy transfer (FRET). Loss of FRET can therefore report on decreased nanoclustering and any process upstream of it, such as Ras lipid modifications and correct trafficking. Thus, cellular FRET screens employing Ras-derived fluorescence biosensors are potentially powerful tools to discover chemical or genetic modulators of functional Ras membrane organization. Here we implement fluorescence anisotropy-based homo-FRET measurements of Ras-derived constructs labelled with only one fluorescent protein on a confocal microscope and a fluorescence plate reader. We show that homo-FRET of both H-Ras- and K-Ras-derived constructs can sensitively report on Ras-lipidation and -trafficking inhibitors, as well as on genetic perturbations of proteins regulating membrane anchorage. By exploiting the switch I/II-binding Ras-dimerizing compound BI-2852, this assay is also suitable to report on the engagement of the K-Ras switch II pocket by small molecules such as AMG 510. Given that homo-FRET only requires one fluorescent protein tagged Ras construct, this approach has significant advantages to create Ras-nanoclustering FRET-biosensor reporter cell lines, as compared to the more common hetero-FRET approaches

    Targeting oncogenic signaling proteins : new insights using a FRET-based chemical biology approach

    Get PDF
    Cancer affects more than 20 million people each year and this rate is increasing globally. The Ras/MAPK-pathway is one of the best-studied cancer signaling pathways. Ras proteins are mutated in almost 20% of all human cancers and despite numerous efforts, no effective therapy that specifically targets Ras is available to date. It is now well established that Ras proteins laterally segregate on the plasma membrane into transient nanoscale signaling complexes called nanoclusters. These Ras nanoclusters are essential for the high-fidelity signal transmission. Disruption of nanoclustering leads to reduction in Ras activity and signaling, therefore targeting nanoclusters opens up important new therapeutic possibilities in cancer. This work describes three different studies exploring the idea of membrane protein nanoclusters as novel anti-cancer drug targets. It is focused on the design and implementation of a simple, cell-based Förster Resonance Energy Transfer (FRET)-biosensor screening platform to identify compounds that affect Ras membrane organization and nanoclustering. Chemical libraries from different sources were tested and a number of potential hit molecules were validated on full-length oncogenic proteins using a combination of imaging, biochemical and transformation assays. In the first study, a small chemical library was screened using H-ras derived FRET-biosensors. Surprisingly from this screen, commonly used protein synthesis inhibitors (PSIs) were found to specifically increase H-ras nanoclustering and downstream signalling in a H-ras dependent manner. Using a representative PSI, increase in H-ras activity was shown to induce cancer stem cell (CSC)-enriched mammosphere formation and tumor growth of breast cancer cells. Moreover, PSIs do not increase K-ras nanoclustering, making this screening approach suitable for identifying Ras isoform-specific inhibitors. In the second study, a nanoncluster-directed screen using both H- and K-ras derived FRET biosensors identified CSC inhibitor salinomycin to specifically inhibit K-ras nanocluster organization and downstream signaling. A K-ras nanoclusteringassociated gene signature was established that predicts the drug sensitivity of cancer cells to CSC inhibitors. Interestingly, almost 8% of patient tumor samples in the The Cancer Genome Atlas (TCGA) database had the above gene signature and were associated with a significantly higher mortality. From this mechanistic insight, an additional microbial metabolite screen on H- and K-ras biosensors identified ophiobolin A and conglobatin A to specifically affect K-ras nanoclustering and to act as potential breast CSC inhibitors. In the third study, the Ras FRET-biosensor principle was used to investigate membrane anchorage and nanoclustering of myristoylated proteins such as heterotrimeric G-proteins, Yes- and Src-kinases. Furthermore, Yes-biosensor was validated to be a suitable platform for performing chemical and genetic screens to identify myristoylation inhibitors. The results of this thesis demonstrate the potential of the Ras-derived FRETbiosensor platform to differentiate and identify Ras-isoform specfic inhibitors. The results also highlight that most of the inhibitors identified predominantly perturb Ras subcellular distribution and membrane organization through some novel and yet unknown mechanisms. The results give new insights into the role of Ras nanoclusters as promising new molecular targets in cancer and in stem cells

    Detection of Ras nanoclustering-dependent homo-FRET using fluorescence anisotropy measurements

    Get PDF
    The small GTPase Ras is frequently mutated in cancer and a driver of tumorigenesis. The recent years have shown great progress in drug-targeting Ras and understanding how it operates on the plasma membrane. We now know that Ras is non-randomly organized into proteo-lipid complexes on the membrane, called nanoclusters. Nano -clusters contain only a few Ras proteins and are necessary for the recruitment of downstream effectors, such as Raf. If tagged with fluorescent proteins, the dense packing of Ras in nanoclusters can be analyzed by Fo center dot rster/ fluorescence resonance energy transfer (FRET). Loss of FRET can therefore report on decreased nanoclustering and any process upstream of it, such as Ras lipid modifications and correct trafficking. Thus, cellular FRET screens employing Ras-derived fluorescence biosensors are potentially powerful tools to discover chemical or genetic modulators of functional Ras membrane organization. Here we implement fluorescence anisotropy-based homo-FRET measurements of Ras-derived constructs labelled with only one fluorescent protein on a confocal microscope and a fluorescence plate reader. We show that homo-FRET of both H -Ras-and K-Ras-derived con-structs can sensitively report on Ras-lipidation and-trafficking inhibitors, as well as on genetic perturbations of proteins regulating membrane anchorage. By exploiting the switch I/II-binding Ras-dimerizing compound BI -2852, this assay is also suitable to report on the engagement of the K-Ras switch II pocket by small molecules such as AMG 510. Given that homo-FRET only requires one fluorescent protein tagged Ras construct, this approach has significant advantages to create Ras-nanoclustering FRET-biosensor reporter cell lines, as compared to the more common hetero-FRET approaches.Peer reviewe

    Design and reporting principle of NANOMS.

    No full text
    <p>FRET-biosensor design of the three different NANOMS. (<b>A</b>) The myristoylated N-terminal membrane-targeting motifs of mouse Gα<sub>i2</sub> (residues 1–35), human Yes (1–17)- and human Src (1–16)-kinases were genetically fused to the N-terminus of fluorescent proteins mCFP or mCit. The sequence of the employed membrane-targeting motifs can be found in <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0066425#pone.0066425.s006" target="_blank">Table S2</a></b>. (<b>B</b>) Intracellular processing involves cleavage of the N-terminal methionine (grey) by methionine amino-peptidase (Met-AP), NMT-mediated myristoylation on glycine 2 (yellow) and depending on the motif cysteine-palmitoylation (red). (<b>C</b>) Lipid modified reporters spontaneously organize into plasma membrane nanocluster. Tight packing of membrane targeted donor (mCFP)- and acceptor (mCit)-fluorophores (blue and yellow squares, respectively) in nanocluster leads to FRET. FRET can decrease due to loss of nanoclustering or cytoplasmic redistribution of the NANOMS after inhibitor treatment. As membrane anchorage is required for the functioning of myristoylated proteins, NANOMS report on functional membrane anchorage.</p

    Cherry-picked chemical compound library screen with Yes-NANOMS.

    No full text
    <p>(<b>A</b>) Chemical structures of chemical compounds that were included in the cherry-picked chemical library. (<b>B</b>) BHK21 cells were transfected with Yes-NANOMS and screened with shown chemical compounds at a final concentration of 10 µM/mL. FRET-response of Yes-NANOMS to the chemical compounds is represented with E<sub>max</sub> values. Block line indicates the average E<sub>max</sub> and the error bars denote the s.e.m (n≥4). Samples were statistically compared with the untreated control. See Methods for more on statistical analysis.</p

    NANOMS reports on RNAi-mediated depletion of NMT.

    No full text
    <p>(<b>A</b>) HEK293 EBNA cells transiently expressing Yes-NANOMS and (<b>B</b>) HEK293 cells transiently expressing Gi2-NANOMS were treated with NMT1 or NMT2 specific siRNAs or control siRNA. Knock-down efficiencies are shown in <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0066425#pone.0066425.s004" target="_blank">Figure S4</a></b>. The characteristic E<sub>max</sub>-value was determined on flow cytometric FRET data. The error bars denote the s.e.m (n = 4). Samples were statistically compared with the untreated control. See Methods for more on statistical analysis.</p

    NANOMS report on chemical inhibition of NMT.

    No full text
    <p>(<b>A</b>) FRET-responses of Yes-, Src- and Gi2-NANOMS transfected BHK cells treated with 4 µM of the specific NMT inhibitor DDD85646. The error bars denote the s.e.m (n = 5). Samples were statistically compared with the untreated control. See Methods for more information on statistical analysis. (<b>B</b>) Confocal sensitized acceptor FRET-imaging of Yes-NANOMS expressed in BHK cells. Cells were treated as indicated. Top row shows acceptor channel images, and bottom row FRET images. The look-up table shows the FRET-index FR, color coded with high FRET levels in black and yellow (value 1) indicating no FRET. Scale bar is representative for all images and corresponds to 10 µm. (<b>C</b>) Dose-response curves of the effect of DDD85646 on the E<sub>max</sub> values of Yes- and Src-NANOMS expressed in BHK cells (n = 6).</p

    Cellular FRET-Biosensors to detect membrane targeting inhibitors of N-Myristoylated Proteins

    Get PDF
    Hundreds of eukaryotic signaling proteins require myristoylation to functionally associate with intracellular membranes. N-myristoyl transferases (NMT) responsible for this modification are established drug targets in cancer and infectious diseases. Here we describe NANOMS (NANOclustering and Myristoylation Sensors), biosensors that exploit the FRET resulting from plasma membrane nanoclustering of myristoylated membrane targeting sequences of Gαi2, Yes- or Src-kinases fused to fluorescent proteins. When expressed in mammalian cells, NANOMS report on loss of membrane anchorage due to chemical or genetic inhibition of myristoylation e.g. by blocking NMT and methionine-aminopeptidase (Met-AP). We used Yes-NANOMS to assess inhibitors of NMT and a cherry-picked compound library of putative Met-AP inhibitors. Thus we successfully confirmed the activity of DDD85646 and fumagillin in our cellular assay. The developed assay is unique in its ability to identify modulators of signaling protein nanoclustering, and is amenable to high throughput screening for chemical or genetic inhibitors of functional membrane anchorage of myristoylated proteins in mammalian cells
    corecore