12 research outputs found

    Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF

    Get PDF
    Incremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and shapes. As evidenced by earlier studies, multiple forming tests with different process parameters have been conducted to experimentally explore such parameters when using SPIF. With regard to the range of these parameters, in the scope of this study, the influence of tool material, tool shape, tool-end corner radius, and tool surface roughness (Ra/Rz) were investigated experimentally on SPIF components: the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the help of SPIF, Artificial Neural Network (ANN) was used to explore and determine proper materials and the geometry of forming tools: thus, ANN was applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and fundamentally impact the final products

    Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials

    Get PDF
    Due to the variety of properties of the composites produced, determining the choice of the appropriate cutting technique is demanding. Therefore, it is necessary to know the problems associated with cutting operations, i.e., mechanical cutting (blanking), plasma cutting plasma, water jet cutting, abrasive water jet cutting, laser cutting and electrical discharge machining (EDM). The criterion for choosing the right cutting technique for a specific application depends not only on the expected cutting speed and material thickness, but it is also related to the physico-mechanical properties of the material being processed. In other words, the large variety of composite properties necessitates an individual approach determining the possibility of cutting a composite material with a specific method. This paper presents the achievements gained over the last ten years in the field of non-conventional cutting of metal-based and polymer-based composite materials. The greatest attention is paid to the methods of electrical discharge machining and ultrasonic cutting. The methods of high-energy cutting and water jet cutting are also considered and discussed. Although it is well-known that plasma cutting is not widely used in cutting composites, the authors also took into account this type of cutting treatment. The volume of each chapter depends on the dissemination of a given metal-based and polymer-based composite material cutting technique. For each cutting technique, the paper presents the phenomena that have a direct impact on the quality of the resulting surface and on the formation of the most important defects encountered. Finally, the identified current knowledge gaps are discussed.publishedVersio

    Study on Effecting Parameters of Flat and Hemispherical end Tools in SPIF of Aluminium Foils

    Get PDF
    Single Point Incremental Forming (SPIF) is a fast technique in the range of flexible prototype production without using a punch or die. Absence of the molding tools makes SPIF useful to form a complex product and these parts usually need different tool shapes. The aim of this study was to compare the performance of flat end and hemispherical end tools in micro-SPIF and evaluate the threshold value of the tool radius in relation to initial blank thickness. This paper investigated the best results of the final geometry, thickness homogeneity, minimum pillow surface, and maximum forming depth using different shapes and different sizes of the tool. The analysis of the results on AlMn1Mg1 foils with 0,22 mm initial thickness shows that the flat tool improves the geometry accuracy and decreases the pillow effect. Furthermore, in micro-ISF higher formability and more stable thickness distribution can be achieved with a flat end tool

    Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets

    Get PDF
    Today the topic of incremental sheet forming (ISF) is one of the most active areas of sheet metal forming research. ISF can be an essential alternative to conventional sheet forming for prototypes or non-mass products. Single point incremental forming (SPIF) is one of the most innovative and widely used fields in ISF with the potential to form sheet products. The formed components by SPIF lack geometric accuracy, which is one of the obstacles that prevents SPIF from being adopted as a sheet forming process in the industry. Pillow effect and wall displacement are influential contributors to manufacturing defects. Thus, optimal process parameters should be selected to produce a SPIF component with sufficient quality and without defects. In this context, this study presents an insight into the effects of the different materials and shapes of forming tools, tool head diameters, tool corner radiuses, and tool surface roughness (Ra and Rz). The studied factors include the pillow effect and wall diameter of SPIF components of AlMn1Mg1 aluminum alloy blank sheets. In order to produce a well-established study of process parameters, in the scope of this paper different modeling tools were used to predict the outcomes of the process. For that purpose, actual data collected from 108 experimentally formed parts under different process conditions of SPIF were used. Neuron by Neuron (NBN), Gradient Boosting Regression (GBR), CatBoost, and two different structures of Multilayer Perceptron were used and analyzed for studying the effect of parameters on the factors under scrutiny. Different validation metrics were adopted to determine the quality of each model and to predict the impact of the pillow effect and wall diameter. For the calculation of the pillow effect and wall diameter, two equations were developed based on the research parameters. As opposed to the experimental approach, analytical equations help researchers to estimate results values relatively speedily and in a feasible way. Different partitioning weight methods have been used to determine the relative importance (RI) and individual feature importance of SPIF parameters for the expected pillow effect and wall diameter. A close relationship has been identified to exist between the actual and predicted results. For the first time in the field of incremental forming study, through the construction of Catboost models, SHapley Additive exPlanations (SHAP) was used to ascertain the impact of individual parameters on pillow effect and wall diameter predictions. CatBoost was able to predict the wall diameter with R 2 values between the range of 0.9714 and 0.8947 in the case of the training and testing dataset, and between the range of 0.6062 and 0.6406 when predicting pillow effect. It was discovered that, depending on different validation metrics, the Levenberg–Marquardt training algorithm performed the most effectively in predicting the wall diameter and pillow effect with R 2 values in the range of 0.9645 and 0.9082 for wall diameter and in the range of 0.7506 and 0.7129 in the case of the pillow effect. NBN has no results worthy of mentioning, and GBR yields good prediction only of the wall diameter

    Emerging trends in single point incremental sheet forming of lightweight metals

    Get PDF
    Lightweight materials, such as titanium alloys, magnesium alloys, and aluminium alloys, are characterised by unusual combinations of high strength, corrosion resistance, and low weight. However, some of the grades of these alloys exhibit poor formability at room temperature, which limits their application in sheet metal-forming processes. Lightweight materials are used extensively in the automobile and aerospace industries, leading to increasing demands for advanced forming technologies. This article presents a brief overview of state-of-the-art methods of incremental sheet forming (ISF) for lightweight materials with a special emphasis on the research published in 2015–2021. First, a review of the incremental forming method is provided. Next, the effect of the process conditions (i.e., forming tool, forming path, forming parameters) on the surface finish of drawpieces, geometric accuracy, and process formability of the sheet metals in conventional ISF and thermally-assisted ISF variants are considered. Special attention is given to a review of the effects of contact conditions between the tool and sheet metal on material deformation. The previous publications related to emerging incremental forming technologies, i.e., laser-assisted ISF, water jet ISF, electrically-assisted ISF and ultrasonic-assisted ISF, are also reviewed. The paper seeks to guide and inspire researchers by identifying the current development trends of the valuable contributions made in the field of SPIF of lightweight metallic materials

    Recent Developments and Future Challenges in Incremental Sheet Forming of Aluminium and Aluminium Alloy Sheets

    Get PDF
    Due to a favourable strength-to-density ratio, aluminium and its alloys are increasingly used in the automotive, aviation and space industries for the fabrication of skins and other structural elements. This article explores the opportunities for and limitations of using Single- and Two Point Incremental Sheet Forming techniques to form sheets from aluminium and its alloys. Incremental Sheet Forming (ISF) methods are designed to increase the efficiency of processing in low- and medium-batch production because (i) it does not require the production of a matrix and (ii) the forming time is much higher than in conventional methods of sheet metal forming. The tool in the form of a rotating mandrel gradually sinks into the sheet, thus leading to an increase in the degree of deformation of the material. This article provides an overview of the published results of research on the influence of the parameters of the ISF process (feed rate, tool rotational speed, step size), tool path strategy, friction conditions and process temperature on the formability and surface quality of the workpieces. This study summarises the latest development trends in experimental research on, and computer simulation using, the finite element method of ISF processes conducted in cold forming conditions and at elevated temperature. Possible directions for further research are also identified

    Parametric Effects of Single Point Incremental Forming on Hardness of AA1100 Aluminium Alloy Sheets

    Get PDF
    When using a unique tool with different controlled path strategies in the absence of a punch and die, the local plastic deformation of a sheet is called Single Point Incremental Forming (SPIF). The lack of available knowledge regarding SPIF parameters and their effects on components has made the industry reluctant to embrace this technology. To make SPIF a significant industrial application and to convince the industry to use this technology, it is important to study mechanical properties and effective parameters prior to and after the forming process. Moreover, in order to produce a SPIF component with sufficient quality without defects, optimal process parameters should be selected. In this context, this paper offers insight into the effects of the forming tool diameter, coolant type, tool speed, and feed rates on the hardness of AA1100 aluminium alloy sheet material. Based on the research parameters, different regression equations were generated to calculate hardness. As opposed to the experimental approach, regression equations enable researchers to estimate hardness values relatively quickly and in a practicable way. The Relative Importance (RI) of SPIF parameters for expected hardness, determined with the partitioning weight method of an Artificial Neural Network (ANN), is also presented in the study. The analysis of the test results showed that hardness noticeably increased when tool speed increased. An increase in feed rate also led to an increase in hardness. In addition, the effects of various greases and coolant oil were studied using the same feed rates; when coolant oil was used, hardness increased, and when grease was applied, hardness decreased

    Application of Artificial Neural Networks to the Analysis of Friction Behaviour in a Drawbead Profile in Sheet Metal Forming

    No full text
    Drawbeads are used when forming drawpieces with complex shapes to equalise the flow resistance of a material around the perimeter of the drawpiece or to change the state of stress in certain regions of the drawpiece. This article presents a special drawbead simulator for determining the value of the coefficient of friction on the drawbead. The aim of this paper is the application of artificial neural networks (ANNs) to understand the effect of the most important parameters of the friction process (sample orientation in relation to the rolling direction of the steel sheets, surface roughness of the counter-samples and lubrication conditions) on the coefficient of friction. The intention was to build a database for training ANNs. The friction coefficient was determined for low-carbon steel sheets with various drawability indices: drawing quality DQ, deep-drawing quality DDQ and extra deep-drawing quality EDDQ. Equivalents of the sheets tested in EN standards are DC01 (DQ), DC03 (DDQ) and DC04 (EDDQ). The tests were carried out under the conditions of dry friction and the sheet surface was lubricated with machine oil LAN46 and hydraulic oil LHL32, commonly used in sheet metal forming. Moreover, various specimen orientations (0° and 90°) in relation to the rolling direction of the steel sheets were investigated. Moreover, a wide range of surface roughness values of the counter-samples (Ra = 0.32 μm, 0.63 μm, 1.25 μm and 2.5 μm) were also considered. In general, the value of the coefficient of friction increased with increasing surface roughness of the counter-samples. In the case of LAN46 machine oil, the effectiveness of lubrication decreased with increasing mean roughness of the counter-samples Ra = 0.32–1.25 μm. With increasing drawing quality of the sheet metal, the effectiveness of lubrication increased, but only in the range of surface roughness of the counter-samples in which Ra = 0.32–1.25 μm. This study investigated different transfer functions and training algorithms to develop the best artificial neural network structure. Backpropagation in an MLP structure was used to build the structure. In addition, the COF was calculated using a parameter-based analytical equation. Garson partitioning weight was used to calculate the relative importance (RI) effect on coefficient of friction. The Bayesian regularization backpropagation (BRB)—Trainbr training algorithm, together with the radial basis normalized—Radbasn transfer function, scored best in predicting the coefficient of friction with R2 values between 0.9318 and 0.9180 for the training and testing datasets, respectively
    corecore