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Abstract
Today the topic of incremental sheet forming (ISF) is one of the most active areas of sheet metal forming research. ISF can be
an essential alternative to conventional sheet forming for prototypes or non-mass products. Single point incremental forming
(SPIF) is one of the most innovative and widely used fields in ISF with the potential to form sheet products. The formed
components by SPIF lack geometric accuracy, which is one of the obstacles that prevents SPIF from being adopted as a sheet
forming process in the industry. Pillow effect and wall displacement are influential contributors to manufacturing defects.
Thus, optimal process parameters should be selected to produce a SPIF component with sufficient quality and without defects.
In this context, this study presents an insight into the effects of the different materials and shapes of forming tools, tool head
diameters, tool corner radiuses, and tool surface roughness (Ra and Rz). The studied factors include the pillow effect and
wall diameter of SPIF components of AlMn1Mg1 aluminum alloy blank sheets. In order to produce a well-established study
of process parameters, in the scope of this paper different modeling tools were used to predict the outcomes of the process.
For that purpose, actual data collected from 108 experimentally formed parts under different process conditions of SPIF were
used. Neuron by Neuron (NBN), Gradient Boosting Regression (GBR), CatBoost, and two different structures of Multilayer
Perceptron were used and analyzed for studying the effect of parameters on the factors under scrutiny. Different validation
metrics were adopted to determine the quality of each model and to predict the impact of the pillow effect and wall diameter.
For the calculation of the pillow effect and wall diameter, two equations were developed based on the research parameters.
As opposed to the experimental approach, analytical equations help researchers to estimate results values relatively speedily
and in a feasible way. Different partitioning weight methods have been used to determine the relative importance (RI) and
individual feature importance of SPIF parameters for the expected pillow effect and wall diameter. A close relationship has
been identified to exist between the actual and predicted results. For the first time in the field of incremental forming study,
through the construction of Catboost models, SHapley Additive exPlanations (SHAP) was used to ascertain the impact of
individual parameters on pillow effect and wall diameter predictions. CatBoost was able to predict the wall diameter with
R2 values between the range of 0.9714 and 0.8947 in the case of the training and testing dataset, and between the range
of 0.6062 and 0.6406 when predicting pillow effect. It was discovered that, depending on different validation metrics, the
Levenberg–Marquardt training algorithm performed the most effectively in predicting the wall diameter and pillow effect
with R2 values in the range of 0.9645 and 0.9082 for wall diameter and in the range of 0.7506 and 0.7129 in the case of the
pillow effect. NBN has no results worthy of mentioning, and GBR yields good prediction only of the wall diameter.
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Introduction

Sheet metal forming technology forms parts through a series
of localized incremental plastic deformations called Incre-
mental Sheet Forming (ISF) (Jackson & Allwood, 2009;
Kumar &Kumar, 2015). ISF is a moderate, innovative sheet-
forming technology without employing classic punch and
dies (Najm et al., 2030). The components are formed by
way of a predefined strategy called path, which guides a
simple tool that performs incremental movements over the
clamped sheet to form the desired final shape (Azaouzi
& Lebaal, 2012; M. Amala Justus Selvam, R. Velu, & T.
Dheerankumar, 1050; Szpunar et al., 2021). The first dieless
incremental forming process can be traced back to Leszak
(Leszak, 1967). The main two types of ISF are Single Point
Incremental Forming (SPIF) and Two Point Incremental
Forming (TPIF). The first patent mentioned before can be
considered a SPIF, and TPIF was first presented by Mat-
subara (Matsubara, 1994). SPIF is more appropriate than
conventional sheet-forming methods to manufacture proto-
types, small production batches, and customized components
(Mezher et al., 2018; Paniti et al., 2020; Trzepieciński et al.,
2022a). SPIF is flexible and with its help it is very simple
to produce complex geometries by following a programmed
path strategy using a CNC machine with at least three con-
trolled axes (Trzepieciński et al., 2022b). A very up-to-date
paper briefly overviewed recent developments in SPIF of
lightweight materials (Trzepieciński et al., 2021a). SPIF is
one of the promising technologies in the future of sheet form-
ing for aerospace applications (Trzepieciński et al., 2021b).
However, the quality, surface finish, and geometric accuracy
of products formed by SPIF are affected by different process
parameters. At the same time, improper selection of process
parameters can cause deviation and inaccuracy with respect
to desired shapes. Still, ISF in general, and SPIF in particular,
have disadvantages in terms of geometric accuracy and pil-
low effect. Due to the elastic–plastic deformation throughout
the forming process, which is apt to instability, the formed
sheet is prone to be impacted by a springback (Khan et al.,
2015; Zhang et al., 2016) and pillow effect (Bai et al., 2019;
Najm & Paniti, 2020). Matching the wall profile of the prod-
uct to the CAD model based on the path strategy is one of
the challenges of this process. One of the main factors that
affects the accuracy of the components in terms of geometric
accuracy is springback (Mezher et al., 2021a, 2021b). Wall
displacement due to springback is the difference between the
actual wall angle or diameter and the angle or diameter of the
CAD model. The springback of component walls is induced
mainly by two factors: local springback and global spring-
back. Due to the sheet’s position following the use of the
advanced forming tool, the local forming that occurred while
the sheet returns to its initial position after the tool has passed
causes local springback.On theother hand, global springback

occurs as a result of residual stresses, which stem from the
unconstrainedmaterial in the formed sheet after releasing the
sheet from clamping (Edwards et al., 2017). In addition to the
two types of springbackmentioned above, Gates et al. (2016)
noted that another type of springback ensues upon the dis-
placement of the forming tool, which they named continuous
local springback. Kiridena et al. (2016) invented innovative
tools to increase the geometric accuracy of products formed
incrementally. They described that dimensional accuracy is
significantly impacted by the lengthening of the tool shank
and by the decrease of the tool diameter, while the underside
flat part of the donut-shaped tool increases the formed part’s
accuracy. The papers (Najm & Paniti, 2018, 2020) stated
that, as compared to the hemispherical tool of components
formed by SPIF, flat tools led to better formability, increased
homogeneity in thickness distribution, and a minimized pil-
low effect.

The pillow effect—also called bulge—is a concave sur-
face developing on the unformed bottom area in the center
of the parts (Nasulea & Oancea, 2021); pillow effect is the
influential forming error that negatively impacts the geomet-
ric accuracy of SPIF components and limits formed part’s
formability (Wei et al., 2020). The pillow effect occurs due to
the springbackof thewall between the obtainedgeometry and
the CADmodel, in which the forming tool generates tension
on the unformed surface from the corner, and the middle part
remains free to become puffy. The pillow appearing in the
form of a bulge on the remaining unformed surface must stay
flat during and after the forming process. Researchers have
attempted to find a proper method to prevent the formation
of pillow effect in products formed using SPIF. Ambrogio
et al. (2007) suggest an ANOVA analysis based equation
which allows for identifying quadratic model equations for
the purpose of predicting geometrical errors between an ideal
surface and real surfaces in the case of truncated pyramid
shape aluminum alloy AA1050–O sheets. The researchers
state that pillow effect is strongly influenced by tool diame-
ter and product height. Micari et al. (2007) indicated that two
types of errors in the typologies result in inaccurately formed
parts of ISF: the two typologies’ errors are springback and
pillow effect. Pillow effect increases forming force, which
results in the inaccuracy of parts. Thus, work hardening dur-
ing multi-point forming decreases the pillow effect in the
case of multi-point forming (Zhang et al., 2017). Al-Ghamdi
andHussain (2015) have studied themechanical properties of
formed parts on pillow effect. They state that the tensile frac-
ture affecting and controlling formability has an insignificant
impact on bulge. However, a decrease in hardening exponent,
which controls stretchability, decreases bulge, and this can be
considered a significant property that affects the pilloweffect.
Furthermore, higher forming depth leads to bigger billowing
but not in a linear way: certain specified depths relieve the
pillow effect because of the property of the hardening expo-
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nent. Afzal (2021) sees this differently: he claims that the
pillow effect sets in because of two different states in the
formed sheet: the unformed base is in an elastic state, while
the formed wall is in a plastic state. Isidore et al. (Isidore,
2014; Isidore et al., 2016) found that parts formed with the
help of a hemispherical tool caused more oversized pillows
because strains and compressive stresses were generated due
to the compression of the material. Also, it was observed that
smaller pillows resulted when a flat tool was used because
tensile stress and strains impacted in transverse directions.
Essa and Hartley (2011) discovered various ways to improve
geometric accuracy by executing FE in SPIF. They reduced
the bending of components via flanking using a support plate,
and thus minimized springback by stationing a supporting
tool and by eliminating the pillow effect through modifying
the last stage of the tool path.

Due to their excellent formability and resistance to corro-
sion, general-purpose 3xxx’s alloys are used for architectural
applications and for the manufacturing of various products.
3xxx’s alloys are non-heat-treatable but exhibit about 20%
more strength than 1xxx series alloys.Manganese is the prin-
cipal alloying element of 3xxx alloys, which is added either
of its own or with magnesium. However, magnesium is con-
siderablymore effective thanmanganese as a hardener: about
0.8% Mg is equal to 1.25% Mn (Davis, 2001). In the exper-
iments of single point incremental forming conducted in the
scope of this study, an AlMn1Mg1 aluminum alloy blank
sheet with an initial thickness of 0.22 mm was used. This
alloy belongs to the 3xxx series based on its sequence of ele-
ments. Examples of common AlMn1Mg1 aluminum alloy
applications include beer & beverage cans (Hirsch, 2006),
where good formability is achieved by (Mg) with strength-
ening effects by (Mn). AlMn1Mg1 aluminum alloy is also
used in automotive radiator heat exchangers and as tubing in
commercial power plant heat exchangers (Kaufman, 2000),
as well as for the following specific purposes: sheet metal
work, storage tanks, agricultural applications, building prod-
ucts, containers, electronics, furniture, kitchen equipment,
recreation vehicles, trucks and trailers (Davis, 2001).

Recently, various techniques of artificial intelligence have
been used in many industries including the metal form-
ing industry. In the last decade, machine learning has been
applied using various Artificial Neural networks (ANN)
techniques in a number of applications and industries. Fur-
thermore, machine learning has dominated manufacturing
with a view to designing the most practical, sufficient and
adequate predictive models (Hussaini et al., 2014; Kon-
dayya & Gopala Krishna, 2013; Lela et al., 2009; Li, 2013;
Marouani & Aguir, 2012). A recent state-of-the-art review
discovered analytical and numerical models of incremental
formation (IF). IF-related issues have been solved using arti-
ficial intelligence AI-based computational approaches. This
research evaluates IF literature. Artificial neural networks,

support vector regression, decision trees, fuzzy logic, evo-
lutionary algorithms, and particle swarm optimization solve
IF-related issues. Hybrid approaches integrate some of the
previous strategies (Nagargoje et al., 2021). Different intelli-
gences with or without controlled manufacturing have been
generated or developed as predictive models in end-milling
machining, high-speed machining, and powder metallurgy
(Amirjan et al., 2013; Ezugwu et al., 2005; Zain et al., 2010).
Artificial neural network architecture has generated tool
paths directly from a digital component model for ISF com-
ponents. Multiple training techniques, network topologies,
and training sets were examined in a feedforward network
structure with backpropagation. They prove neural networks
can generate tool routes for sheet metal free forming (Hart-
mann et al., 2019). Notably with respect to SPIF, different
studies have developed ANN, support Victor Regression
(SVR), Gradient Boosting Regressions (GBR) models for
the prediction of formability (Najm & Paniti, 2021a), sur-
face roughness (Najm & Paniti, 2021b; Trzepieciński et al.,
2021c) and hardness (Najm et al., 2021) of components
formed using SPIF under various forming conditions. Low
et al. (2022) predict this error distribution from input CAD
geometry of SPIF components using Convolutional Neural
Networks-Forming Prediction (CNN-FP). For the untrained
wall angle, the CNN-FP model had an RMSE (Root mean
squared error) of 0.381 mm at 50 mm depth. The CNN-FP
performance for the untrained complicated geometry was
determined to be 0.391 mm at 30 mm depth. However, there
was considerable degradation at 50 mm depth of the compli-
cated geometry when the model’s prediction had an RMSE
of 0.903 mm.

In light of the literature, the above-detailed concerns in
connection with SPIF as well as the lacking standardization
of SPIF process parameters and the scarcity of referent math-
ematical models have motivated the authors of this paper to
deal with the investigation and prediction of the pillow effect
and wall diameter of truncated frustums processed by SPIF.
To the authors’ knowledge, such an experimental process
has not been tested or described in the literature so far. The
researchers consider SPIF process parameters on geometric
accuracy (pillow effect and wall diameter) as one of the main
significant drawbacks of the SPIF process. Geometric accu-
racy in the form of components’ wall and pillow effect can be
influenced by various factors including tool materials, tool
shape and size and the surface finish of the tooltip. There-
fore, in the present paper, geometric accuracy with respect to
components’wall accuracy andpilloweffect havebeen inves-
tigated experimentally and have been studied in the scope
of the above-mentioned parameters. Furthermore, as an aim
and novelty in the scope of this paper, various models have
been built along different combinations of parameters for
both pillow effect and wall diameter datasets, and accord-
ingly prediction equations based on weights and biases have
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been derived. The combined partitioning weight of the NN
was adopted to estimate the relative importance (RI) of SPIF
parameters onmodel output. In addition, and for the first time
in ISF, process parameters have been interpreted via SHap-
ley Additive exPlanations (SHAP), which were utilized to
establish parameters’ relevance on the pillow effect and wall
diameter.

Material properties

In this section material properties of the investigated sheet
and properties of the applied tools are presented. In the scope
of this study, an initial 0.22 mm thick AlMn1Mg1 aluminum
alloy square-shaped blank sheets of 150 mm×150 mmwere
used, the tensile of the specimens cut from the blank sheet
was tested according to the EN ISO 6892-1:2010 standard
and the tensile was conducted using an INSTRON 5582 uni-
versal testing machine at room temperature. Based on the
rolling direction, the specimens were cut from three direc-
tions: 0°, 45°, and 90°, and three samples were produced
for each direction. The relative standard deviation did not
exceed 3% based on the test procedure. Furthermore, the
planar anisotropy values (r10) were established using an
Advanced Video Extensometer (AVE). The average values
of the mechanical properties are listed in Table 1. The chem-
ical composition of the sheet material was analyzed with
the help of a WAS FOUNDRY-MASTER Optical Emission
Spectroscopy (OES), and the pertaining data are found in
Table 2.

For the formation of the sheet in the experiments of SPIF in
the scope of this research design, various forming tools were
used as far as tool shapes, tool materials, the tip radius (R),
and the corner radius (r) of the tool are concerned. Two dif-
ferent tool designs have been selected: hemispherical with
variety in tip radius (R) (see Fig. 1a) and flat tools with
changes in corner radius (r) (see Fig. 1b). The (R) values
are 1 mm, 2 mm, and 3 mm, while the (r) values are 0.1 mm,
0.3 mm, and 0.5 mm. Each set of tools was created using
six different materials: Table 3 details the metal tools and
their properties, and Table 4 lists the tools created using
polymer provided by STRATASYS. Hardness was experi-
mentally tested with the help of a Wolpert Diatronic 2RC S
hardness tester according to ISO6506-1:2014.Consequently,
the corresponding hardness value for each tool was adopted
for matching with the ISO code of the tested materials in
question. Thus, the mechanical properties were determined
based on the ISO code of the forming tool’s material. For
the determination of the ISO code, a FOUNDRY-MASTER
Pro2 Optical Emission Spectrometer was used to measure
each forming tool material.

Table 1 Mechanical properties of AlMn1Mg1 aluminum alloy sheet

Direction 0° 45° 90° SD (σ)

Yield strength (MPa) 0.2 88.30 90 86.30 1.5122

Ultimate tensile strength (MPa) 183 155.5 170.3 11.2377

Elongation (%) 16.44 9.27 12.48 2.9325

Elongation A50 (%) 16.88 10.45 12.95 2.6466

n5 0.297 0.266 0.268 0.0142

r10 0.554 0.580 0.594 0.0166

Table 2 Chemical composition of AlMn1Mg1 aluminum alloy sheet
(in wt%)

Al Si Fe Cu Mn Mg Zn Cr Ni Others

96.90 0.201 0.448 0.212 0.807 1.260 0.071 0.022 0.006 0.073

Table 3 Mechanical properties of metal tools

Material Tensile
strength
Rm-MPa

Yield Strength
Rp 0.2-MPa

Brinell
hardness-HB

Steel (C45) 700 490 223

Brass
(CuZn39Pb3)

500 390 186

Bronze
(CuSn8)

450 300 135

Copper
(E-Cu57)

395 365 88

Aluminum
(AlMgSi
0.5)

215 160 73

Experiments

A frustum geometry shape with the dimensions shown in
Fig. 2 was created experimentally during the forming pro-
cess. The failure criterion was defined as the end of the
forming process, and an example of a failed part is shown
in Fig. 3. Two different tool shapes (spherical and flat),
with three different tooltip sizes (three different radii (R)
for the hemispherical and three different corner radii (r)) for
the flat tool, and six different materials (see Fig. 4)—(Steel
(C45), Brass (CuZn39Pb3), Bronze (CuSn8), Copper (E-
Cu57),Aluminum(AlMgSi 0.5) andpolymerVeroWhitePlus
(RGD835))—altogether produce 36 various forming process
conditions. For reasons of reliability and correct measure-
ment assurance, three parts were formed for each process
condition for the purpose of ensuring the accuracy of the
obtained results; the total number of formed components
thus totaled 108. The Design of Experiments (DOE) was not
applied for minimizing the number of experiments because
the resulting data were collected and used as an actual dataset
(input and output) for the predictive models. A SIEMENS
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Fig. 1 Forming tools: a hemispherical tool, b flat tool

Table 4 Polymer properties
Polymer Density

(g/cm3)
Elastic
Modulus
(MPa)

Tensile
strength (MPa)

Elongation at
break %

Shore D
Hardness

VeroWhitePlus,
(RGD835)

1.19 2500 58 25 85

Fig. 2 CAD geometry and dimensions of experimental product

Fig. 3 Failed specimen

Fig. 4 Tool materials

123



336 Journal of Intelligent Manufacturing (2023) 34:331–367

Fig. 5 Topper CNC machine
with rapid clamping rig on the
CNC milling table

Table 5 Fixed process
parameters Path strategy Feed rate (mm/min) Spindle speed (rpm) Step down (mm) Lubricant

Helical 1500 2000 0.05 Machine oil

Fig. 6 CAD geometry of experimental product with view of an inward spiral path

Topper TMV-510T 4-axis CNC milling machine combined
with sinumerik 840-D controller was used in the forming
process (see Fig. 5 for the machine and clamping design).
The fixed forming process parameters are shown in Table 5.
A step size with a value of 0.05 mm in direction Z was used
as a constant value for the whole forming path. The appli-
cation of a smaller step size results in an accurate geometry
and better surface finish of final parts formed by SPIF (Lu
et al., 2014; Mulay et al., 2018). A strategy of spiral path
moves inward to the sheet center, with the center adopted
to form the frustum parts incrementally, as shown in Fig. 6.
This strategy was developed by Skjoedt et al. (2007) to reach
the maximum axial loads in step size and to achieve a bet-
ter surface of the impacted inner surface with the help of
the forming tool. Also, this strategy aids the more success-
ful and precise formation of components (Kumar & Gulati,
2020).

In each part of forming, the surface roughness of the
forming toolwasmeasured before and after starting the form-

ing process. The forming tool’s surface roughness measured
before the forming process was adopted as an input value
of the upcoming formed part. For this value and the upcom-
ing forming process, the surface roughness of the tool was
adopted as input and so on. The above-mentioned scenario
was applied to all forming tools used in the scope of this
study. Nevertheless, a new polymer tool was employed in
each forming process because of the wear on the forming
tool developed by the polymer. The surface roughness of each
polymer tool was measured before the start of the process.

The profiles of all formed parts and their unformed bases
(Wall diameter and Pillow effect) were measured using a
Mitutoyo Coordinate Machine CV-1000 (MCM), see Fig. 7.
The average deviation of the three parts experimentally
formed under the same SPIF condition was compared to the
CAD model in terms of wall diameter and unformed base,
and this was adopted as values of the geometrical accuracy
and pillow effect studied in this research.
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Fig. 7 Mitutoyo coordinate
machine Measuring tip SPIF componentClamping rigMeasured profile

The MCM instrument was operated in the measurement
processes along 49 mm at a speed of 0.5 mm per second
together with a pitch size of 0.005 mm. MCM automatically
creates a component profile with the possibility of measuring
each point, as shown in Fig. 8. This figure shows examples
only for 20 points. For each part, more than 9000 points were
measured automatically with the help of axis X and Z coordi-
nates. The measured data points were used to build an actual
profile so that the CAD model, the measurement of the wall
diameter and the pillow effect could be compared with this
resulting profile. The pillow effect is the difference between
the highest peak and the lowest valley values measured. In
an ideal case of forming, the lower bottom unformed surface
should be flat between the peak and the lowest valley value.

Artificial neural networks

The notion of the neural network is often traced back toWar-
renMcCulloch andWalter Pitts’s 1940 study. Their basic idea
was that neural networks could compute any logical functions
or mathematical formulations. Furthermore, the invention of
the Perceptron Network at the end of 1950 can be considered
as the first practical application of ANN (Hagan et al., 2014).
Recently, neural networks have become the main interest for
thousands of researchers in different fields of science. As a
whole, it can be established that there is no scientific field
that does not have any links with neural networks. Scientists
in different areas including healthcare, aerospace, defense,
arts, filmmaking, music and various industry technologies
adopted ANN.

Neuron by Neuron (NBN)

Using Visual Studio 6.0 and C + + language, Hao Yu and
Wilamowski (Yu & Wilamowski, 2009a, 2009b) developed
a Neuron by Neuron (NBN) trainer. NBN can work with
Fully Connected Neurons (FCN) and needs a lower num-
ber of neurons than Multilayer Perceptron (MLP). Figure 9
shows a scheme of five inputs fully connectedwith three neu-

rons as well as one output and its topology. The developed
tool supports three different types of neurons. The neurons
are bipolar (“mbip”), unipolar (mu), and linear (“mlin”).Both
the mbip and mu have outputs not exceeding 1, with nega-
tive and positive values for mbip, and only positive values
for mu. The equations of the three types of neurons are pre-
sented in Eqs. 1, 2, and 3 (Yu&Wilamowski, 2009a, 2009b),
respectively. In this study, running timewas 100, and iteration
was 500 with a maximum error of 0.001. The training tool
provides a direct sum squared error (SSE) with the plotting
area on the interface, which can indicate the accuracy of the
prediction. All other parameters were set as default because
they gave the best results. All the neuron types were tried
with different numbers of connection neurons. It is worth
mentioning that categorical encoding was used because the
collected data from the 108 samples contained numerical and
categorical datasets (see Categorical Encoding).

Bipolar (mbip) fb(net) � tanh(gain × net) + der × net
(1)

Unipolar (mu) fu(net) � 1

1 + e−gain×net
+ der × net (2)

Linear (mlin) fl (net) � gain × net (3)

where “gain” and “der” are parameters of activation func-
tions.

Gradient boosting regression (GBR)

Gradient Boosting is one of the most common and powerful
tree algorithms (Pedregosa, 2011). Gradient boosting is an
MLmethod used as a classifier and regressor. This is a predic-
tion model of collective learning, where each level attempts
to correct the errors of a previous level in a formation called
decision trees. Gradient Boosting model (Chen et al., 2021)
with least-squares loss and 1000 regression trees with a depth
of 6 and a minimum samples split of 2 was run to predict the
pillow effect and wall diameter as shown in Fig. 10. Least-
squares loss tries to locate predictive points and fits them on
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Fig. 8 Component profile; pillow effect and wall diameter as measured by a Mitutoyo coordinate machine
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Fig. 9 Scheme of neuron by neuron (NBN) of five inputs fully connected with three neurons and one output

Fig. 10 Regression trees of depth 6 and minimum samples split 2

the already fitted line in an attempt to minimize error. The
regression tree depth shows how many splits a tree allows to
be created before a prediction is made. The boosting method
is about consecutively learning learners’ nodes on the basis of
previous ones by way of fitting the data set and analyzing the
ensuing errors. In other words, this means that the boosting
method works as a cycle consisting of learning nodes, fitting
results to the data set, analyzing errors between the actual
and predicted values, and re-starting learning the nodes that
have been learned before. Moreover, this cycle is repeated
until the previously set iteration number is reached.

CatBoost

CatBoost is a high-performance open-source library for gra-
dient boosting of decision trees (Prokhorenkova et al., 2018).
A machine learning algorithm called CatBoost was devel-
oped by Yandex researchers and engineers. CatBoost has
many features.One of themain features allows using categor-
ical data (non-numeric factors), for which pre-processing of
data is not needed. In addition, turning suchdata into numbers
by encoding is not necessary, either (Dorogush et al., 2018).
Furthermore, CatBoost aptly predicts with default parame-
ters, so parameter tuning is unnecessary (Ibragimov&Gusev,
2019). By default, CatBoost builds 1000 trees, i.e., full sym-
metric binary trees with six in-depth and two leaves. The
learning rate is determined automatically according to the

properties of the trained dataset and the number of iterations.
The automatically selected learning rate should be close to
the optimal one. The number of iterations can be lowered for
faster training, but in this case learning ratemust be increased.

Multilayer PerceptronMLP

Network elements’ organization or structure, intercon-
nections, inputs, and outputs constitute net topology. The
topology of an ANN can be defined according to the num-
ber of input and output layers, with the transfer functions
between these layers and the number of neurons in each layer
(Nabipour & Keshavarz, 2017). ANN structure consists of
input and output layers with a minimum of one hidden layer.
Each layer of the net contains a number of neurons. Neurons
in the input are equal to the number of input variables, and
output neurons are equal to the number of outputs associated
with each input. Based on the transfer function or so-called
activation function (Beale et al., 2013), these neurons in the
layers allow for the transfer of weight between the layers
backward and forward. The current study adopted the mul-
tilayer perceptron (MLP) structure for its ANN model using
a backpropagation learning algorithm. The idea of the MLP
was initiated by Werbos in 1974, and Rumelhart, McClel-
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Fig. 11 Different multilayer perceptron (MLP) structures: a two outputs; b one output

land and Hinton in 1986 (Riedmiller). Equation 1 defines the
multilayer perceptron as follows:

y � f (net) � f

(
n∑

i�1

wi x + b

)
(4)

where y is the output and x is input, wi are the weights, and
b is the bias (Principe et al., 1997).

Using MATLAB R2020a (Beale et al., 2019), two differ-
ent MLP structures were created to predict wall diameter and
pillow effect. The inputs and targets dataset were obtained
from actual measured data from the formed parts by SPIF.
The main difference between the two trained structures is
the number of prediction outputs: one of the networks deals
with one target, and the second deals with two targets. The
outputs are wall diameter or pillow effect, or wall diameter
together with the pillow effect. However, the inputs have 5
neurons: tool materials, tool shapes, tool radius, and tool sur-
face roughness valuesRa andRz. In the scopeof this research,
each net structure exhibited one hidden layer with ten neu-
rons connected to the input and output layers, as shown in the
illustrated scheme in Fig. 11a and b. The other main param-
eters selected for the purpose of training in this study were
as follows: learning rate 0.01, performance goal 0.001, and
1000 as the number of epochs. It is noteworthy that differ-
ent training and transfer functions were tried and trained for

finding the best model and structure (see Training function
and Transfer function).

The training flowchart of the developed model and the
checking process using the test data are presented in Fig. 12.
Twomain conditions make decisions during the running pro-
cess. The first loop in light blue color saves the model and
all variables with low limits of condition. The second loop in
light red is activated after the first condition occurs and stops.
The second loop finds the training and variables, compares
these with the variables saved from the previous training, and
continues to do so until 1000 iterations. Shared step loops are
displayed as light green arrows.

Training function

In neural networks, dataset training utilizes the optimization
technique for tuning and finding a set of network weights for
building a good prediction map. There are various optimiza-
tion algorithms also called training functions. The training
function is an algorithm for training the network to identify
a specific input and for mapping such input to an output. The
training function depends on many characteristics, including
the trained dataset, weights and biases, as well as the perfor-
mance goal. One challenge of building good, fast and really
accurate predictions lies in selecting a fitted training function
for the network. With this in mind, in the scope of this paper,
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Fig. 12 Flowchart of developed multilayer perceptron (MLP) model

ten different types of training function “learning algorithms”
were executed in both MLP nets for the purpose of map-
ping outputs associated with inputs. Levenberg–Marquardt
(Trainlm) is one of these implemented training functions
and is considered the fastest compared to the others. Simi-
larly, the BFGS Quasi-Newton algorithm is quite fast (Beale
et al., 2019). The corresponding training functions are listed
in Table 6.

Transfer function

In machine learning, the sums of each node are weighted,
and the sum is passed through a function known as activation
function or transfer function. The summedweights undergo a
transfer function, and the transfer function computes the out-
put of each layer through adopting summed weights entering
the given layer. Setting proper transfer functions is a chal-
lenging task and is based on many factors but mainly on

Table 6 Details of training functions used in multilayer perceptron
(MLP)

Acronym Algorithm Description

LM Trainlm Levenberg–Marquardt

BFG Trainbfg BFGS Quasi-Newton

RP Trainrp Resilient backpropagation

SCG Trainscg Scaled conjugate gradient

CGB Traincgb Conjugate gradient with Powell/Beale
restarts

CGF Traincgf Fletcher–Powell conjugate gradient

CGP Traincgp Polak–Ribiére conjugate gradient

OSS Trainoss One step secant

GDX Traingdx Variable learning rate backpropagation

BRB Trainbr Bayesian regularization backpropagation

network structure. Usually, in multilayer perceptron (MLP)
Log-sigmoid (Logsig) is used, and there are alternative func-
tions like Hyperbolic tangent sigmoid (Tansig), which is
generally used for pattern recognition (Beale et al., 2019).
In this study, besides the aforementioned two functions, thir-
teen different transfer functions were performed to improve
prediction accuracy. Eventually, the linear (Purelin) trans-
fer function was chosen for the output layer in all cases.
Table 7 lists all the transfer function algorithms with related
Eqs. 5–18 used for this study (Demuth, 2000).

Dataset distribution

The actual data of SPIF components were used as input data
for all the structures andmodels built and trained in the scope
of this study to predict pillow effect and wall diameter as
network outputs. Predicting results when forming new parts
without executing any new process of forming is both eco-
nomical and more practical. However, existing data must be
separated into various subsets: i.e., training, validation, and
testing datasets. In fact, prediction accuracy and training per-
formance are significantly influenced by dividing the dataset
into training and testing subsets (Zhang et al., 1998). Inap-
propriate subsets negatively affect benchmark performance.
On the other hand, Shahin (Shahin et al., 2000) claimed there
is no apparent association between the splitting ratio of the
dataset, but Zhang et al. (Zhang et al., 1998) explain that
the splitting ratio is one of the main problems. Yet, no gen-
eral setting is available as a solution. Based on their surveys,
most researchers split the datasets into lines with a different
ratio of subsets. The most broadly adopted ratios are 90%
vs. 10%, 80% vs. 20%, or 70% vs. 30% for training and test-
ing. As part of the training run in the scope of this paper,
optimal prediction was obtained by adopting a dividing ratio
of 80% vs. 20% of the actual data (108 samples) concern-
ing training and testing datasets, respectively. Regarding the
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Table 7 Details of transfer functions used in multilayer perceptron (MLP)

where x is the weighted sum of w_i, b, and y of Eq. 4

actual dataset, 108 rows were taken from the SPIF compo-
nents formed experimentally, and the recorded rows were
used as training and testing datasets.

Categorical encoding

There are three typical methods for altering categorical vari-
ables to numerical values. One of them represents categorical

data sets: this is the One-Hot Encoding variables (Guido,
1997). The other two are Ordinal Encoding and Dummy
Encoding. The categorical variables will sparse-binarize and
can be integrated into training in different machine learning
models. The idea of one-hot-encoding is to replace categori-
cal data with one or more new features. Each parameter takes
a new numerical feature, and one of these features is always
active through their substitution by 0 and 1 byway of creating
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Table 8 Details of different encoding methods

Tool Material One-Hot Encoding Dummy Encoding Ordinal Encoding
Copper 1 0 0 0 0 0 1 0 0 0 0 0

Aluminum 0 1 0 0 0 0 0 1 0 0 0 1
Brass 0 0 1 0 0 0 0 0 1 0 0 2

Polymer 0 0 0 1 0 0 0 0 0 1 0 3
Bronze 0 0 0 0 1 0 0 0 0 0 1 4
Steel 0 0 0 0 0 1 0 0 0 0 0 5

one binary for each category. In ordinal encoding, each cate-
gory is given an Integer value and sequences up to the number
of the actual features. The dummy encoding is a slightly
improved version of one-hot-encoding. In one-hot-encoding
the numerical values are equal to the number of categories
and the dummy is equal to the number of categories minus
1. Table 8 shows different ways of encoding the categor-
ical data as part of the current study. In the scope of this
research, two categorical sets were encoded. Tool materials
and tool shapes were binarized as sparse matrices. However,
ordinal encoding was adopted for tool materials because the
other methods were in conflict either with feature importance
calculation (see Contribution analysis of input variables) or
one-hot-encoding concerning the tool shape; in the scope of
latter the flat tool is replaced by 0 and the hemispherical tool
is represented by 1.

Overfitting

A neural network is a practical tool used in various applica-
tions, but it has several drawbacks. One of these drawbacks
is underfitting or overfitting. Underfitting happens when a
model is too simple for training the selected dataset, and
overfitting is when the network gives a larger error for the
new data set than concerning the set trained before. In other
words, the trained net can memorize the learned data set but
is not trained to generalize those new data sets that are not
fitted. Boosting algorithms are generally supplied with regu-
larization methods to avert overfitting (Ibragimov & Gusev,
2019) because the number of samples in an ensemble set
does not always improve the accuracy but can reduce gener-
alization ability (Mease & Wyner, 2008). There are various
ways to improve and handle network generalization, such as:
using a large network to provide a good fit, training several
nets to guarantee that good generalization is found, averaging
the outputs of trained multiple neural networks, separating
data randomly, and tuning the complexity of a net through
regularization (Bishop, 1995).

In the MLP network created for the purpose of prediction
in this study, generalization has been improved by the so-
called early stopping method. The early stopping technique
is a default method automatically provided for all super-
vised network creation functions, including backpropagation

networks. This method splits the training dataset into three
subsets: training, validation, and testing (see Fig. 13). Dur-
ing network training, training subset data will be utilized for
calculating the gradient and for updating weights and biases
to fit the models. Also, the validation subset estimates pre-
diction error during the training process; and finally, the test
subset will be utilized to test the learned network as well as
to assess generalization errors and plot them instantly as the
training is running. However, if the overfitting of data starts
over during the training of the net, the errors will be larger
in the validation subset. In addition, if the validation error
increases above the minimum at a significantly different iter-
ation number of iterations and, at the same time, becomes
larger than the error of the test subset, the training stops, and
network weights and biases return to the smallest validation
error (Beale et al., 2020).

Investigation of accuracy

There are numerous validation metrics, but using the appro-
priate validationmetric is essential for evaluating a predictive
model, and physical observations are also necessary for
improving model performance. This study compared and
validated different structures and various training and trans-
ferring algorithms for assessing andmeasuring the agreement
between actual and predicted values. Picking the suitable val-
idation metric is crucial and challenging for assessing results
and for minimizing errors. In the scope of assessing results
to test performance, all structures and models trained and
tested in this study were compared based on their evaluation
by appropriate metrics. Root Mean Square Error (RMSE),
MeanAbsolute Error (MAE), and theCoefficient ofDetermi-
nation (R2), together with the primary metrics used to extract
these above-mentioned metrics, were adopted. An R2 value
close to 1 indicates good performance, and RMSE and also
MAE near 0 means lower error. In this scenario reliable per-
formance can be ensured; and vice versa: a large deviance
between RMSE and MAE values points to significant vari-
ations in the distribution of error. However, the limitations
of R2 are listed in Misra and He (2020); furthermore, RMSE
andMAE have an accurate evaluation compared to other val-
idation metrics because if MAE has more stability, RMSE is
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Fig. 13 Regression process;
training, validation, and testing

more sensitive to error. For our purposes and for prediction
values validation, Standard Error Mean (SEM) was used,
which is the original Standard Deviation (SD) of the sample
size divided by the square root of the sample size. The other
metrics like Error (E), Mean Error (ME), and Mean Square
Error (MSE) were involved in originating validation equa-
tions. The Total Sum of Square (SStot) and the Sum of the
Square ofResiduals (SSres)were adopted for the derivation of
R2 and adj. R2. Analytically, pertaining validation equations
are as follows:
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Contribution analysis of input variables

The contribution analysis of input variables on the associated
outputs is called feature importance, variable importance, or
relative importance. However, this analysis indicates each
feature’s relative importance in the model driving a predic-
tion by showing changes in the averages of predictions in
the event that the feature value changes. The substitute of
the input variables with high relative importance (RI) val-
ues significantly affects results as compared to variables that
have lower RI values (Nabipour & Keshavarz, 2017; Reza-
kazemi et al., 2011; Vatankhah et al., 2014). Concerning
this, there are various techniques to calculate feature impor-
tance and such techniques include Garson (Garson, 1991),
Most Squares (Ibrahim, 2013), and Connection Weights
(Olden & Jackson, 2002). These methods are established
based on the connection weights of neurons and are depicted
in Eqs. (36)–(38), respectively. In addition, there is also
built-in feature importance in Gradient Boost and CatBoost

regression. In the literature, different studies adopted feature
importance to calculate and evaluate their impacts on vari-
ables (Ding, 2019; Rezakazemi et al., 2011; Shabanzadeh
et al., 2015; Vatankhah et al., 2014; Zarei et al., 2020; Zhou
et al., 2015), but the first time feature importancewas adopted
to find relative importance in ISF was in Najm & Paniti,
2021b and later in Najm & Paniti, 2021a; Najm et al., 2021).
The equations below (36–38) describe the above as follows:
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RI (%) �
nv∑
j�1

yv j y jo (38)

where nv number of neurons in the input layer, nh number
of neurons in the hidden layer, yj absolute value of con-
nection weights between the input and the hidden layers,
hOj absolute value of connection weights between the hid-

den and the output layers,
∑nv

j�1

(
yi
v j − y f

v j

)2
sum squared

difference between initial connection weights and final con-
nection weights from the input layer to the hidden layer,∑nv

j�1

∑n
v�1

(
yi
v j − y f

v j

)2
total of sum squared difference

of all inputs.
∑nv

j�1 yv j y jo sum of product of final weights
of connection from input neuron to hidden neurons with the
connection from hidden neurons to output neurons. j total
number of hidden neurons. o output neurons.

Another way to present the input variables is the SHAP
value, which shows a features’ importance by quantifying the
contributions of each feature and by calculating the contribu-
tions of those features that have contributed to the prediction
to the greatest extent. SHAP (SHapley Additive exPlana-
tions) presented by Lundberg and Lee (Lundberg & Lee,
2017) is a unified framework for interpreting predictions,
and its interpretation has been inspired by several meth-
ods (Bach et al., 2015; Ribeiro et al., 2016; Štrumbelj &
Kononenko, 2014). The SHAP principal calculation (Lund-
berg et al., 2018) is shown in Eq. 39.

ShapV aluesi �
∑

S⊆N\{i}

|S|! (M − |S| − 1)!

M!

[ fx (S ∪ {i}) − fx (S)] (39)

where:M number of input features.N set of all input features.
S set of non-zero feature indices (features observed and not
unknown). fx (S) � E[ f (X)|Xs ]is the model’s prediction

123



346 Journal of Intelligent Manufacturing (2023) 34:331–367

for input xx, where E[ f (X)|Xs ]is the expected value of the
function conditioned on a subset S of input features.

Results and discussion

Regarding the prediction of pillow effect and wall diameter
by way of applying different models and structures, Table 9
depicts values of different validation metrics used for check-
ing performance.

It is imperative to distinguish between training and test
errors. Training errors are calculated using the same data
as the ones used for training the model, but a stored full
dataset unknown to the model is used for calculating test
error. It can be concluded that the R2 value of the training
dataset implies variance within the trained samples through
the model, whereas the R2 value of the testing dataset indi-
cates the predictive quality of the model. From Table 9, it is
clear that there is a significant disparity between the different
techniques in favor of the developed model as far as the pre-
diction of the pillow effect is concerned. Using the features
to predict a pillow and using the same features to predict the
wall diameter are two different problems. The features can be
readily used to predict the wall diameter. However, not all the
prediction models can learn the connections among the data
provided and use such information for the prediction of the
pillow. A few possible reasons for this are the following: the
problem has a stochastic nature, the data set lacks some criti-
cal features, the data are insufficient, the model is too simple
for the problem, or the combination of any of the preceding
causes. All the above-mentioned issues would cause a dis-
parity in results with respect to the estimation of the model’s
real predicting capabilities in the case of unseen data. There-
fore, upon comparing the R2 of the testing with respect to
all models and algorithms, it can be noted that the developed
MLP model offered the best performance in the prediction
of the pillow effect. The best performance of predicting the
pillow effect was achieved by using BFGS Quasi-Newton
(BFG)—Trainbfg as a training function and Symmetric Sig-
moid (Tansig) as a transfer function.Regarding the prediction
of wall diameter, the Gradient Boosting Regression (GBR)
has the largest R2 value as a model performance in terms of
wall diameter prediction, and the developedMLPmodelwith
one output comes in second in terms of R2 (see Fig. 14, which
exhibits the techniques of the ANN used for predicting the
pillow effect and wall diameter values of SPIF components).
Due to the fact that the R2 value of testing using the NBN
technique is negative, R2 was converted to zero for illustra-
tion purposes in Fig. 14. Since R2 is defined as the percentage
of variance explained by the fit, the fit can be worse than the
simple application of a horizontal line for this purpose, in
which case R2 will be negative. Nevertheless, from a logical
point of view, GBR’s R2 value is slightly larger than the R2

value of the developed model, and all other validation met-
rics indicate that the developed model is better than GBR in
terms of performance. The best performance of the developed
MLP model to predict wall diameter was obtained by using
the Levenberg–Marquardt (LM)—Trainlm training function
and Softmax transfer function. It is noteworthy that the two
outputs model was not able to record good performance con-
cerning the other techniques. For checking the results of all
the training and transfer functions, see Table 11, 12, 13, 14
in the Appendix.

Predictive testing data for both pillow effect and wall
diameter using different ANN techniques versus the actual
data are presented in Figs. 15a–d and 16a–d. The solid line
displays an exact theoretical fit of actual and predicted val-
ues, with superimposed data over them. The distribution and
deviation situated far away from the solid line are based on
the model’s ability to predict the pillow effect or wall diam-
eter values with the lowest errors.

For discovering an alternative approach of predicting pil-
low effect and wall diameter in an easy, practical and faster
way—instead of building, running, and evaluating a new
ANNmodel each time recurringly—analytical equations for
the prediction of pillow effect and wall diameter of parts
formed by SPIF were extracted from the best model. This
gave rise to a new method: by way of substituting only the
process parameters, the obtained equations can be directly
used for predicting either pillow effect or the wall diame-
ter. Therefore, Eqs. 42 and 45 were formed, which needed
constant weights and biases imported from the ANN net-
workwith the best performance. The extractedANNnetwork
weights and biases functioned as one set of input weight (IW)
and layer weight (LW). The IW is between the inputs and the
hidden layer, and the LW is between the hidden and the out-
put layers. The biases for each layer are (b1) and (b2). In the
Appendix, Table 15 for pillow effect and Table 16 for wall
diameter provide b1, b2, IW, and LW obtained from the best
trained ANN model.

f (x) � tansig(x) � 2(
1 + exp(−2×x)

) − 1
(17)
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Table 9 Validation metrics for
checking ANN structure and
methods used for predicting
pillow effect and wall diameter

ME MAE MSE RMSE MRE SD SEM R2 Adj. R2

Neuron by neuron (NBN)

Pillow effect

Training 0.0000 0.0021 0.0000 0.0034 0.0548 0.0034 0.0004 0.9997 0.9997

Testing − 0.3097 0.4077 0.8395 0.9163 4.5606 0.8826 0.1882 − 32.4884 0.1635

Wall diameter

Training 0.0000 0.0134 0.0010 0.0317 0.0003 0.0319 0.0034 0.9999 0.9999

Testing 2.0903 3.2505 29.6215 5.4426 0.0770 5.1434 1.0966 − 1.3733 0.1437

Gradient boosting regression (GBR)

Pillow effect

Training 0.0000 0.0470 0.0061 0.0783 0.4147 0.0788 0.0085 0.8481 0.6142

Testing 0.0127 0.0772 0.0119 0.1092 1.6854 0.1110 0.0237 0.3315 − 2.3002

Wall diameter

Training 0.0000 0.0530 0.1005 0.3170 0.0012 0.3188 0.0344 0.9933 0.9934

Testing − 0.2163 1.0874 1.7549 1.3247 0.0265 1.3377 0.2852 0.9185 0.9227

CatBoost

Pillow effect

Training 0.0099 0.0688 0.0152 0.1235 1.2768 0.1238 0.0133 0.6062 0.1314

Testing 0.0018 0.0668 0.0090 0.0949 1.2411 0.0971 0.0207 0.6406 0.3196

Wall diameter

Training 0.0052 0.5230 0.4959 0.7042 0.0129 0.7083 0.0764 0.9714 0.9677

Testing 0.1909 0.8511 1.3138 1.1462 0.0203 1.1568 0.2466 0.8947 0.8653

Multilayer perceptron (MLP) One output

Pillow effect

Training 0.0094 0.0477 0.0101 0.1007 0.8276 0.1009 0.0109 0.7506 0.6500

Testing − 0.0054 0.0559 0.0050 0.0704 2.0491 0.0719 0.0153 0.7129 0.6145

Wall diameter

Training 0.0514 0.4167 0.5711 0.7557 0.0102 0.7584 0.0818 0.9645 0.9635

Testing 0.5275 1.0515 1.5923 1.2619 0.0257 1.1733 0.2501 0.9082 0.9116

Fig. 14 R2 values for predicted
results (pillow effect and wall
diameter) in the case of different
ANN models
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a b

c d

Fig. 15 Actual and calculated values of pillow effect obtained with ANN models and algorithms in the case of a Neuron by neuron (NBN),
b Gradient boosting regression (GBR), c CatBoost, and d Multilayer perceptron (MLP)

a b

c d

Fig. 16 Actual and calculated values of wall diameter obtained with ANN models and algorithms in the case of a Neuron by neuron (NBN),
b Gradient boosting regression (GBR), c CatBoost, and d multilayer perceptron (MLP)

Pillow E f f ect predict
i � b2 + LW × tansig(b1 + I W × x)

(40)

Pillow E f f ect predict
i

� b2 + LW × 2(
1 + exp(−2×(b1+I W×x))

) − 1
(41)
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PillowE f f ect predict
i � b2

[−4.4799]
LW

+[4.8997 − 2.9949 − 1.8258 − 4.4692 2.3491 − 0.0459 0.9892 − 10.9224 − 11.2295 − 15.6383]

× 2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0689
2.5502
4.8340
5.3937
0.5004
6.4855
1.7566
2.0245

−1.1407
6.9462

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

I W⎡
⎢⎢⎢⎢⎣

−0.3664 3.4493 −0.3515 2.7239 0.7225 −1.4367 9.6762 −3.1508 3.2435 −14.1984
−2.9456 1.8466 −1.7678 −0.8303 4.7506 6.6591 −4.1411 6.9449 −7.4108 8.0983
−0.0801 2.2851 0.6648 4.9030 0.1742 −1.2504 11.9422 −0.5326 0.4992 3.6904
−0.0311 3.3176 −2.8060 2.1082 −1.2817 −3.6789 2.6040 −8.7422 −3.7858 1.1147
0.1396 0.4012 2.3888 −0.2148 −0.1876 −0.2164 4.8982 −5.5040 6.1299 −9.5227

⎤
⎥⎥⎥⎥⎦

×

x⎡
⎢⎢⎢⎢⎣

T ool Material
T oolShape

T ool End Radius
T ool Roughness(Ra)
T ool Roughness(Rz)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

(42)

f (x) � so f tmax(x) � exp(x)∑(
exp(x)

) (16)

Wall Diameter predict
i � b2 + LW × so f tmax(b1 + I W × x) (43)

Wall Diameter predict
i � b2 + LW × exp(b1+I W×x)∑(

exp(b1+I W×x)
) (44)

W all Diameter predict
i � b2

[19.2151]
LW

+[ 2.5135 22.9679 24.9085 23.8584 −135.9051 29.3786 25.9349 16.5500 29.1113 −19.6351 ]

× exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.1118
1.0873

−5.0721
−4.6389
−3.1617
2.2753
58.4812

−22.5044
−11.0040
−13.1130

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

I W⎡
⎢⎢⎢⎢⎣

−0.2097 11.7171 1.5851 −0.3582 0.8478 0.5419 −21.3230 −0.3622 5.2457 4.8888
0.2117 2.9757 −8.5864 3.2977 −5.0426 −5.9637 73.9425 −17.8875 −7.9919 −35.0915

−1.9420 −77.4397 24.2144 25.8808 23.6070 22.0928 −85.3340 32.3866 18.9395 20.2970
−0.6388 144.0557 44.0436 112.4779 72.4671 73.4602 −254.2707 49.4518 32.7593 13.5966
−1.9055 7.5593 6.3161 −1.9865 2.9167 3.1807 −34.9560 7.7291 5.1248 7.2609

⎤
⎥⎥⎥⎥⎦

×

x⎡
⎢⎢⎢⎢⎣

T ool Material
T oolShape

T ool End Radius
T ool Roughness(Ra)
T ool Roughness(Rz)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.1118
1.0873

−5.0721
−4.6389
−3.1617
2.2753
58.4812

−22.5044
−11.0040
−13.1130

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

I W⎡
⎢⎢⎢⎢⎣

−0.2097 11.7171 1.5851 −0.3582 0.8478 0.5419 −21.3230 −0.3622 5.2457 4.8888
0.2117 2.9757 −8.5864 3.2977 −5.0426 −5.9637 73.9425 −17.8875 −7.9919 −35.0915

−1.9420 −77.4397 24.2144 25.8808 23.6070 22.0928 −85.3340 32.3866 18.9395 20.2970
−0.6388 144.0557 44.0436 112.4779 72.4671 73.4602 −254.2707 49.4518 32.7593 13.5966
−1.9055 7.5593 6.3161 −1.9865 2.9167 3.1807 −34.9560 7.7291 5.1248 7.2609

⎤
⎥⎥⎥⎥⎦

×

x⎡
⎢⎢⎢⎢⎣

T ool Material
T oolShape

T ool End Radius
T ool Roughness(Ra)
T ool Roughness(Rz)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(45)

With respect to relative importance and weights analysis,
considerable significant factors affecting pillow effect and
wall diameter are shown in Figs. 17a–d and 18a–d. Different
methods based onweights and biases for finding the contribu-
tions of the input variables affecting output are pillow effect
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Fig. 17 Relative importance of different input variables on pillow effect according to aGarson, b connectionweights, cmost-squares and dCatBoost
algorithms

Fig. 18 Relative importance of different input variables onwall diameter according to aGarson,b connectionweights, cmost-squares and dCatBoost
algorithms

and wall diameter. Regarding pillow effect (see Fig. 17a–d),
all of themethods show that changes in toolmaterials and tool
shapes have a significant effect with insignificant variance on
the Garson method (see Fig. 17a). Tooltip roughness (Rz) is
listed at the end of the importance list as tooltip roughness
has the lowest impact in all cases except for the connection
weights method (see Fig. 17b). Concerning wall diameter
(see Fig. 18a–d), tooltip roughness (Ra) has the most sig-
nificant impact. On the other hand, the Catboost method
indicates that tool end radius is the most significant impact
on wall diameter (see Fig. 18d). Changes in tool shapes are
always affected on the second level of the contribution’s
impact. Below, tool materials and tool end radius are listed
with the exception of the CatBoost method.

In an attempt to do awaywith this controversy in the varia-
tion of the relative importance of input parameters as yielded
by the different calculation methods, Fig. 19 was created,
which show the average relative importance of the four pre-
viously mentioned methods. It has been concluded that tool
materials and shapes have the most significant influence on
pillow effect. Importantly, the difference in tool end radius
recorded the lowest value. As for wall diameter, the surface
roughness of the tool (Ra) is the highest effective value,
followed by the change in tool shape. The least influential
parameter was change of tool materials.

SHAP is a theoretical method that explains prediction by
models. It can estimate and explain how each feature con-
tributes and influences the model. This technique estimates
each feature’s contribution to each row of the dataset. The
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Fig. 19 Average relative importance of different input variables on a pillow effect, and b wall diameter

Fig. 20 Summary plot of SHAP
value impact on pillow effect

Fig. 21 Summary plot of SHAP
value impact on wall diameter

summary plots in Fig. 20 for pillow effect and Fig. 21 for
wall diameter illustrate the individual feature’s importance
with respect to their feature effects. Each point on the sum-
mary plot represents a Shapley value for a feature. Axis Y
defines the feature’s level, and axis X shows Shapley values.
The color of the plots denotes the value of the feature from
lower to higher importance. The features are listed based on
their importance. Shapley values represent the relative distri-
bution of predictions among the features. It is worth stating
that the same values of a certain feature can have different
contributions towards an output, as dictated by other feature
values for that same row.

Figures 20 and 21 represent every data point in each
dataset feature as a single SHAP value on axis X and each
feature on axis Y. The color bar indicates the feature’s value:
red means high values, and blue indicates low values. Grey
points represent categorical inputs. Values on the right have
a “positive” effect on the output, and values on the left have
a “negative” effect. Positive and negative are merely direc-
tional terms and are related to the direction in which the
model’s output is affected. This, however, does not indicate
the model’s performance. For example, the most distant left
point for tool radius is a high value for the tool radius feature
in the first raw, therefore it appears in red. This high value
for tool radius influenced wall diameter as a model output by
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Table 10 Three different examples of pillow prediction

Tool 
Materials Tool Shapes Tool 

Radius 

Tool 
surface 

roughness 
(Ra) 

Tool 
surface 

roughness 
(Rz) 

Actual 
Pillow 
Effect 

Predict 
Pillow 
Effect 

Condition 

Aluminum Hemispherical 2 0.2 2.66 0.137 0.173 Red (positive) 
Copper Flat 0.3 0.05 0.65 -0.026 -0.291 Blue (negative) 
Polymer Flat 0.5 0.38 6.2 -0.055 -0.029 …. (positive ± negative) 

Fig. 22 SHAP decision plot a all prediction values, and b three prediction values in Table 10

Fig. 23 Total positive SHAP values: a SHAP decision plot, b SHAP bar plot, and c and d SHAP force plot

approximately − 4. The predictive model without that fea-
ture would have predicted a value of 4 or higher. Similarly,
the rightmost red point of the surface roughness feature (Ra)
with a value of 2 means that the absence of this value leads
to the prediction of a wall diameter with a value below − 2.

That means that broader extensions of the data point indicate
the most effective features.

To understand how sharp value changes during the pre-
diction process, three different examples shown in Table 10
illustrate three different behaviors: one on the left side (neg-
ative), one on the right side (positive), and one balanced
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Fig. 24 Total negative SHAP values: a SHAP decision plot, b SHAP bar plot, and c and d SHAP force plot

between the negative and positive sides. The colors used are
only for purposes of demonstration.

The prediction models in Table 10 were visualized using
a SHAP decision plot, which uses cumulative SHAP values.
Each plotted line explains a single model prediction. Fig-
ure 22a plots all the pillow effect predictions, and Fig. 22b
plots three prediction values as mentioned earlier.

Each value is represented individually: Fig. 23 shows total
positive features values, Fig. 24 total negative features values,
and Fig. 25 displays both positive and negative features val-
ues. The three figures mentioned earlier are presented on (a)
a SHAPdecision plot, (b), a SHAPbar plot, and (c and d) on a
SHAP force plot. The SHAP force plot shows exactly which
features had the most extensive influence on the model’s
prediction concerning individual observation values. The dif-
ference between (c and d) for all the figures is that (c) presents
the value of the features, and (d) presents the feature SHAP
value for each feature value.

As attested by the waterfall plots (Figs. 23, 24, 25) of var-
ious SPIF components selected in different conditions, the
order of the impacts of parameters varied in the different com-
ponents. This signifies that the estimation of parameters is the
result of multiple factors. One single effective parameter that
sufficiently affects output (pillow effect or wall diameter)

cannot be captured, given that other parameters could affect
the outcome of the model. Furthermore, complexity in the
formability of parts using SPIF, which consists in stretching,
bending, and shearing with cyclic effects, varies according to
conditions, which thereby yields varying orders of impacting
parameters in the individual components. Hence, this anal-
ysis reveals that each process condition is unique and that
multiple factors interact and differently impact outcomes in
individual parts. Also, forming tools with various materials
show different hardness, which generates different surface
strains. The same also holds true regarding different tool
geometry. However, it is essential to point out that differ-
ent effects on components occur if two tools made from two
different materials but with identical geometry are used. This
phenomenon is caused by different surface strains. Differing
hardness values result in varying tool tip surface roughness,
which thereby affects parts accuracy in terms of pillow effect
and wall diameter. Furthermore, elastic deformation at the
tooltip will produce dimensional inaccuracies of the formed
part, and the plastic deformations will permanently damage
the forming tool thereby excessively impacting the accuracy
of the components, as explained by Kiridena et al. (2016).
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Fig. 25 Positive and negative SHAP values: a SHAP decision plot, b SHAP bar plot, and c and d SHAP force plot

Conclusions

This paper offered and described different algorithms and
model structures of machine learning to predict pillow effect
and wall diameter concerning the geometric accuracy of
SPIF components produced from foil aluminum alloy sheets.
The study’s primary goal was to analyze the feature impor-
tance of SPIF parameters involved in the forming process
with a view to determining the best model and architecture.
Consequently, findings were adopted to derive two analytic
equations for theoretically calculating pillow effect and wall
diameter. The most significant findings of the study are as
follows:

1. In the case of the training and testing datasets, with the
help of R2 values, CatBoost successfully predicted the
wall diameter ranging from 0.9714 to 0.8947, and also
successfully predicted pillow effect between the range
of 0.6062 and 0.6406. Concerning R2 values between
0.9645 and 0.9082 for wall diameter and between 0.7506
and 0.7129 for pillow effect, respectively, it was shown
that theLevenberg–Marquardt training algorithmyielded
the best performance as a prediction model based on dif-
ferent validation metrics. NBN offers no notable results,

while GBR provides a reliable prediction of the wall
diameter.

2. A one-output multilayer perceptron (MLP) solution net-
work showed better results than a network with two
outputs.

3. The most promising performance of predicting pillow
effect was achieved by way of using BFGS Quasi-
Newton (BFG)—Trainbfg as a training function, and
Symmetric sigmoid (Tansig) as a transfer function.

4. The best performance of the developed MLP model to
predict wall diameter was achieved by way of the Lev-
enberg–Marquardt (LM)—Trainlm training function and
softmax transfer function.

5. This research project marks the first time the relative
importance (RI) method using SHapley Additive exPla-
nations (SHAP) was used to assess SPIF factors on
outputs.

6. Relative importance (RI) revealed that tool materials and
shapes are the most influential factors impacting the pil-
low effect. Surface roughness of the tool (Ra), followed
by changes in tool shapes with the highest effective val-
ues on wall diameter.

7. The lowest effective parameter on pillow effect was tool
end radius, and the lowest effective parameter for wall
diameter was changes in tool materials.
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8. Computation of the parameters is achieved by accumulat-
ingmany factors; in reality, individual parameters are not
sufficient enough to affect output (pillow effect or wall
diameter). In otherwords, with respect to other parameter
values in the same row, identical values of one parameter
may contribute to an outcome in a number of different
ways.
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Table 15 Weights and biases of
the best MLP model for
predicting pillow effect
(Trainbfg with
Tansig)—one-output structure

b1 b2 IW LW

− 1.0689 − 4.4799 − 0.3664 − 2.9456 − 0.0801 − 0.0311 0.1396 4.8997

2.5502 3.4493 1.8466 2.2851 3.3176 0.4012 − 2.9949

4.8340 − 0.3515 − 1.7678 0.6648 − 2.8060 2.3888 − 1.8258

5.3937 2.7239 − 0.8303 4.9030 2.1082 − 0.2148 − 4.4692

0.5004 0.7225 4.7506 0.1742 − 1.2817 − 0.1876 2.3491

6.4855 − 1.4367 6.6591 − 1.2504 − 3.6789 − 0.2164 − 0.0459

1.7566 9.6762 − 4.1411 11.9422 2.6040 4.8982 0.9892

2.0245 − 3.1508 6.9449 − 0.5326 − 8.7422 − 5.5040 − 10.9224

− 1.1407 3.2435 − 7.4108 0.4992 − 3.7858 6.1299 − 11.2295

6.9462 − 14.1984 8.0983 3.6904 1.1147 − 9.5227 − 15.6383

Table 16 Weights and biases of
the best MLP model for
predicting wall diameter
(Trainlm with Softmax) –
one-output structure

b1 b2 IW LW

− 2.1118 19.2151 − 0.2097 0.2117 − 1.9420 − 0.6388 − 1.9055 2.5135

1.0873 11.7171 2.9757 − 77.4397 − 144.0557 7.5593 22.9679

− 5.0721 1.5851 − 8.5864 24.2144 44.0436 6.3161 24.9085

− 4.6389 − 0.3582 3.2977 25.8808 112.4779 − 1.9865 23.8584

− 3.1617 0.8478 − 5.0426 23.6070 72.4671 2.9167 − 135.9051

2.2753 0.5419 − 5.9637 22.0928 73.4602 3.1807 29.3786

58.4812 − 21.3230 73.9425 − 85.3340 − 254.2707 − 34.9560 25.9349

− 22.5044 − 0.3622 − 17.8875 32.3866 49.4518 7.7291 16.5500

− 11.0040 5.2457 − 7.9919 18.9395 32.7593 5.1248 29.1113

− 13.1130 4.8888 − 35.0915 20.2970 13.5966 7.2609 − 19.6351
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