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Abstract
Incremental Sheet Forming (ISF) has attracted attention due to its flexibility as far as its forming process and complexity in the
deformation mode are concerned. Single Point Incremental Forming (SPIF) is one of the major types of ISF, which also constitutes
the simplest type of ISF. If sufficient quality and accuracy without defects are desired, for the production of an ISF component, optimal
parameters of the ISF process should be selected. In order to do that, an initial prediction of formability and geometric accuracy helps
researchers select proper parameters when forming components using SPIF. In this process, selected parameters are tool materials and
shapes. As evidenced by earlier studies,multiple forming testswith different process parameters have been conducted to experimentally
explore such parameters when using SPIF.With regard to the range of these parameters, in the scope of this study, the influence of tool
material, tool shape, tool-end corner radius, and tool surface roughness (Ra/Rz) were investigated experimentally on SPIF components:
the studied factors include the formability and geometric accuracy of formed parts. In order to produce a well-established study, an
appropriate modeling tool was needed. To this end, with the help of adopting the data collected from 108 components formed with the
help of SPIF, Artificial Neural Network (ANN)was used to explore and determine proper materials and the geometry of forming tools:
thus, ANNwas applied to predict the formability and geometric accuracy as output. Process parameters were used as input data for the
created ANN relying on actual values obtained from experimental components. In addition, an analytical equation was generated for
each output based on the extracted weight and bias of the best network prediction. Compared to the experimental approach, analytical
equations enable the researcher to estimate parameter values within a relatively short time and in a practicable way. Also, an estimate of
Relative Importance (RI) of SPIF parameters (generated with the help of the partitioning weight method) concerning the expected
output is also presented in the study. One of the key findings is that tool characteristics play an essential role in all predictions and
fundamentally impact the final products.

Keywords SPIF . Incremental sheet forming . Single point . Flat tool . ANN . Predict formability . RI . Thin aluminum alloy
blanks

1 Introduction

Incremental Sheet Forming (ISF) is suitable for low-volume
production and is ideal for complicated designs. ISF was pat-
ented in 1967 [1], and one of the crucial types of ISF is Single
Point Incremental Forming (SPIF). Emerging manufacturing
technologies like ISF developed in the past few decades.
Researchers have shown that an unconventional sheet forming
process like ISF is economically feasible for producing proto-
types; ISF is also versatile and can produce custom and com-
plex products [2, 3]. Given this, a comprehensive literature
review about ISF is presented in [4]. Also, a brief review of
the history of ISF with a focus on the technological progress
involved is found in [1]. This review, however, focuses on the
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mechanism of the deformation, modeling techniques, forming
force prediction, and an investigation of SPIF. Furthermore,
the articles reviewed in this paper all state that ISF is suitable
for economical prototyping and is suitable for preparing cus-
tomized and complex sheet products.

Shrivastava and Tandon [5] investigated components ex-
perimentally formed by SPIF and analyzed them using a finite
element analysis in order to understand the characteristics of
sheet deformation, forming behavior, and dominant deforma-
tion mechanisms. Shrivastava and Tandon concluded that ISF
is a process capable of fulfilling industry demand for highly
complex, economic, and customized products. Duflou et al.
[6] assert that one of the most significant factors which influ-
ence the geometric accuracy of SPIF is tool diameter.
Maqbool and Bambach [7] investigated various SPIF process
parameters, including tool diameter on a pyramidal frustum,
and found that in relation to geometry, smaller tool diameter
positively affects geometrical accuracy in the range (5 mm, 10
mm, and 20 mm) of the tool tip diameter. Brendan et al. [8]
examined two tool tip types (parabolic and angle radius) and
compared the results using hemispherical and flat-bottomed
tool tips. They found that the angular profile tool tip improves
formability but concluded that formability is highest when the
contact surface is decreased in the parabolic tool tip. Najm and
Paniti [9] studied the effect of flat-end tools on SPIF compo-
nents of thin sheets and found that the smallest corner radius
of the flat tool in a range of (0.1 mm, 0.3 mm, and 0.5 mm)
gives the best results in terms of forming depth and geometric
accuracy. Two different tool ends (flat and hemispherical)
were used by Ziran et al. [10] to form an AA-3003O alumi-
num sheet. They found that better geometric accuracy and
formability can be achieved by using a flat tool rather than
applying a hemispherical one. Moreover, they also established
that relatively low forming force is needed when flat ends are
used as compared to hemispherical ends. On the other hand,
Wu et al. [11] claimed that SPIF is a process that exhibits
flexibility in sheet forming, which in turn enables the process
to be used for producing customized complex dimensional
shape parts utilizing different materials. Many studies have
been conducted to understand SPIF, but a majority of them deal
with a sheet thickness of over 0.5 mm. Similarly, many re-
searchers have studied SPIF parameters, but there is less re-
search related specifically to the class of process parameters.
For instance, there is no research studying the prediction of
forming depth when a flat tool and SPIF are applied with an
initial sheet thickness of less than 0.5 mm. No satisfactory so-
lution has been found to improve the geometric accuracy of
sheets below 0.5 mm under various conditions in the case of
SPIF. In fact, the effects of tool materials and shape on the final
product quality have not been discussed in any of the above-
mentioned studies. Even if SPIF is quite flexible, it has limita-
tions: its drawbacks, for instance, include the accuracy of the
geometry of components and the planned achievable depth.

Recently, various techniques of artificial intelligence have
been used in many industries, including the metal forming
industry: specifically, Artificial Neural Network (ANN) is
used for developing predictive models for end-milling ma-
chining, powder metallurgy, and high-speed machining
[12–14]. In addition, machine learning techniques have dom-
inated manufacturing in an attempt to develop the most effec-
tive predictive models [15–19]. There are also different opti-
mization algorithms commonly used in manufacturing pro-
cesses. For example, the Johnson-Cook model constants (J-
C constants) of ultra-fine-grained titanium were researched by
Ning et al. [20]: based on the chip formation model, they
identified such constants via enforcing the gradient search
method using a Kalman filter. Later on, Ning and Liang [21]
developed an inverse identification method for J-C constants
by replacing the exhaustive search method with an iterative
gradient search method in the Kalman Filter algorithm. They
predicted machining forces using the modified chip formation
model and the J-C constants. They found a close correspon-
dence between predicted forces and experimental forces. In
another study, Gok [22] introduced a new method for deter-
mining optimal cutting parameters by applying fuzzy TOPSIS
and gray relational analysis. He found that the lowest values of
cutting velocity, feed rate, and cutting depth produce the
smallest Ra, Rt, Ff, and Fc values in terms of surface rough-
ness. The results obtained using fuzzy TOPSIS are in accor-
dance with the Gray relational analysis. Zuo et al. [23] pre-
sented a new approach to reduce design space and guarantee
topology outcomes concerning manufacturability and engi-
neering, i.e., they recommended a design that conforms to
accepted principles, tests, or standards. They also introduced
manufacturing and machining constraints to the topology op-
timization method formula. Their investigations suggest that
modified topology optimization can solve non-manufacturing
and non-machining problems related to engineering
applications.

Kurra et al. [24] incrementally predicted surface roughness
of Extra Deep Drawing (EDD) steel under various forming
conditions. They evaluated the performance of ANN, SVR,
and a model developed in the scope of the study (Genetic
Programming) using an R-squared value. Using a feed-
forward neural network with a Backpropagation algorithm,
Nasrollahi and Arezoo [25] used training data for two different
ANN models to predict the springback of bending in the case
of sheet metals with holes. They found that data used for one
type of hole, i.e., an oblong hole, and for three other types of
holes (oblong, circle, square) in the bending area all affected
springback. They also established that the use of all types of
holes produces more accurate result for the prediction of
springback: case errors are fewer than in the case of training
each hole separately. Mekras [26] implemented an ANNs
model for successful process set-up and used it in the scope
of sheet metal forming theory. In the model, set-up parameters
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including aluminum alloy type, sheet thickness, pressing
speed, and the tools’ geometrical details were considered.
Mekras found that even in the multi-input and multi-output
process models, which included three inputs and four outputs,
the models’ accuracy was satisfactory. Kashid and Kumar
[27] reviewed sixty-three published research articles and ex-
amined the applications of the ANN technique in sheet metal
working; SPIF was not mentioned in any of the works cited in
the study.

Nowadays, there are many articles concerned with model-
ing and optimizing different parameters in SPIF processes
using an artificial neural network. Maji and Kumar [28] found
that the Adaptive Neuro-Fuzzy Inference System (ANFIS)
yields more accurate prediction when a hybrid algorithm is
used, and even more so when a Backpropagation algorithm
is applied. They developed a response surface methodology
and ANFIS to predict the outcome of SPIF components; they
considered different process parameters and dealt with inverse
predictions of process parameters in SPIF. Furthermore, they
utilized the desirability function and a non-dominated sorting
genetic algorithm for performing multi-objective optimization
in the scope of SPIF. Oraon and V. Sharma [29] predicted the
surface quality of SPIF parts by adopting the ANN model
using a feed-forward neural network along with a
backpropagation learning algorithm. They reported a result
of 94.744% for ANN simulation performance with a mean
absolute error of 1.068%. Also, an ANN model was utilized
by Mulay et al. [30] to predict the average surface roughness
and the wall angle of AA5052-H3 parts manufactured using
SPIF. Oraon et al.[31] trained feed-forward backpropagation
(FFBP) in an ANN model with a structure 6-6-1 to predict the
surface roughness of a brass Cu67Zn33 piece formed by way
of SPIF. Radu et al. [32] evaluated the effectiveness of the
Response Surface Method (RSM) and the Neural Network
(NN) method for improving and controlling the accuracy of
SPIF components. Basing their claims on the accuracy of their
experiments, they suggest further research of a broader range
of process parameters; they claim that such investigation will
help to generate valid general empirical models. Behera et al.
[33] analyzed the accuracy of truncated pyramids formed
using SPIF. They suggested studying the effects of the inter-
action between diverse features of SPIF, and they made pre-
dictions for that purpose. In addition, they also investigated
the effects of material properties and sheet thickness on accu-
racy profiles. In another study, McAnulty et al. [34] described
the effects of forming tip diameter on formability, which is the
focus parameter in their review paper: their efforts are
underpinned by the fact that contradictory results were pub-
lished about the impact of tool diameter on formability. Ten
articles reported that a decrease in tip diameter causes a reduc-
tion in formability, whereas seven articles claimed the oppo-
site. However, six of the studies claimed that the tip diameter
should be optimized to reach maximum formability. Bayram

and Koksal [35] found that a 0.5 mm step size offers better
homogeneous distribution and geometrical accuracy than a
0.2 mm step size in the case of SPIF concerning a 1 mm thick
AA2024 aluminum alloy. Nama et al. [36] found that a larger
tool head, an increase in tool speed and feed rate lead to better
surface roughness of an aluminum 1100 sheet with 0.6 mm
thickness. Rattanachan and Chungchoo [37] investigated the
formability of DIN 1.0037 steel and found that formability
decreased as a consequence of an increase in tool speed.
Based on a review published by Nimbalkar and Nandedkar
[38], the most significant facet in SPIF is the forming tool. For
the optimization of the SPIF process, the quality of formed
components should be maximized. The ideal characteristics of
the product formed using SPIF are geometric accuracy and
maximum forming depth, which can be reached using a de-
sired shape. Besides, formed part accuracy is one of the sig-
nificant elements of the process capability of SPIF.

Based on the literature, it can be concluded that ANN could
be a useful tool for result prediction and modeling prior to
starting new experiments. The benefits of using machine
learning based artificial neural networks before starting new
experiments consist in reducing the time needed for preparing
the experiments, minimizing the errors, and increasing effi-
ciency. Furthermore, ANN is one of the most powerful tools
to predict experimental data for solving engineering problems,
and ANN can serve as a very useful tool to create and evaluate
processes and to determine the final details of tools.

The above-detailed issues as well as the lack of well-
defined requirements of the SPIF process and the absence of
referent mathematical models have motivated the authors to
examine the investigation and prediction of the formability
and geometric accuracy of truncated frustums processed using
SPIF. To the authors’ knowledge, such an experimental pro-
cess has not been tested or described in the literature. In fact, in
the scope of the present project, forming depth was considered
an indicator of formability: forming depth is deemed as an
indicator of the formability of formed parts, as described in
[39–46]. Furthermore, as an aim and novelty in the scope of
this paper, a prediction equation for both accuracy and form-
ability based on weights and biases was derived, as well as the
joint partitioning weight of the neural network was adopted to
assess the Relative Importance (RI) of SPIF parameters on the
output. In view of this and in the scope of this paper, influence
parameters are tool materials, tool shape, end corner radius,
and the surface roughness (Ra/Rz) of the tool.

2 Material properties

In the experiments conducted in the scope of this study, the
components’ blank sheet was made of 0.22 mm AlMn1Mg1
aluminum alloy. By cutting the specimens from the sheet at
0°, 45°, and 90° of the rolling directions, tensile tests were
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carried out at room temperature using an INSTRON 5582
universal testing machine. In the research design, 3 samples
were used for each direction regarding the rolling direction.
As shown in Table 1, which presents average data of the
mechanical properties of the sheet material, the relative
standard deviation did not exceed 3%. In the scope of the
research design, related tensile tests were carried out based
on the EN ISO 6892-1:2010 standard, and an Advanced
Video Extensometer (AVE) was used to measure the pla-
nar anisotropy values (r10).

Table 2 shows the chemical composition of the sheet ma-
terial. In addition, in the SPIF experiments, different tool ma-
terials were used: tool materials (see Fig. 1) consisted of steel
(C45), brass (CuZn39Pb3), bronze (CuSn12), copper (E-
Cu57 ) , a l um inum (A lMgSi 0 . 5 ) , and po lymer
VeroWhitePlus (RGD835). The hardness of the tools was
tested experimentally with the help of a Wolpert Diatronic
2RC S hardness tester, and the measurement was carried out
based on the ISO 6506-1:2014 standard. The materials were
measured by a FOUNDRY-MASTER Pro2 Optical Emission
Spectrometer in order to determine the ISO code of each type
of tool material. Using the ISO code of each material, the
mechanical properties of the metallic tool were listed. The
properties were ensured by measurements executed by
[SAARSTAHL, L. KLEIN SA, AURUBIS, PX PRECIMET
SA, ALUMINCO S.A.] based on the sequence of the mate-
rials in Table 3. Table 4 presents the properties of the polymer
tool provided by STRATASYS.

3 Experiments

Experimental tests were performed using forming a frus-
tum geometry (see Fig. 2a). Each component was formed
until failure: the crack criterion was defined as the end of

forming. Given this, the crack happening during forming is
the very criteria for establishing the forming limit. Fig. 3
shows a failed specimen. Two different tool tips were used
(spherical and flat), with different tip diameters and corner
radiuses. Fig. 2b shows the schematic drawing of the tools,
and Table 5 specifies the dimensions of the spherical and
flat tools. The experiments were performed on a SIEMENS
Topper TMV-510T 4-axis CNC milling machine: Fig. 4
shows the CNC table with a rapid clamping rig. The full
forming processes were carried out using the same param-
eters: a 1500 mm/min feed rate and a 2000 rpm spindle
speed were applied. A constant step-down of a value of
0.05 mm was used, as the application of a smaller step-
down would have resulted in better geometric accuracy
and surface finish of the SPIF components [47, 48]. To
increase the reliability of the measurements, each sample
was formed three times experimentally; the total number of
formed components were thus 108. The data collected
from these samples (108) were used as an actual dataset
(input and output) for prediction; process parameters were
used as inputs, and the obtained results of geometric accu-
racy and formability (maximum depth) were used as output
arguments of the ANN predicted model. In regard to the
above conditions (see Table 13 in the Appendix), which
lists the raw data of the 108 components formed using
experimental SPIF. In each forming process, the surface
roughness of the tool was measured prior to and after
forming. The value of the surface roughness of the forming
tool before the forming process served as the adopted input
value of the formed product. As for this value, tool surface
roughness following the forming process was taken as in-
put for the subsequent forming process and so on. This
method was applied to all tools used in this research.
Nevertheless, due to the wear on the polymer tool surface
caused by forming, a new polymer-forming tool was used
in each forming process, and each polymer tool’s surface
roughness was measured before the start of the process.
Formed part profiles were measured using a Mitutoyo

Table 1 Mechanical properties of blank material

Direction 00 450 900

Yield strength (MPa) 0.2 88.30 90 86.3

Ultimate tensile strength (MPa) 183 155.5 170.3

Elongation (%) 16.44 9.27 12.48

Elongation A50 (%) 16.88 10.45 12.95

n5 0.297 0.266 0.268

r10 0.554 0.580 0.594

Table 2 Chemical composition of blank material

Al Si Fe Cu Mn Mg Zn Cr Ni Others

96.90 0.201 0.448 0.212 0.807 1.260 0.071 0.022 0.006 0.073

CopperAluminumBrassPolymerSteelBronze

Fig. 1 Tool materials
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Coordinate Machine (see Fig. 5). The average deviation
along the wall was considered as the value of geometrical
accuracy for every 3 SPIF components, and the compo-
nents were formed under the same process conditions.
Depth was measured using a Mitutoyo Digimatic Height
Gauge with a maximum jaw distance of 12′′/300 mm and
an uncertainty value of x .0005′′/0.01 mm. Forming depth
was measured between the bottom part and the upper sheet
surface and is expressed as the distance of the jaws, as
shown in Fig. 6.

The measurement data were analyzed to obtain form-
ability and geometric accuracy values. In the scope of
this, formability constituted the forming depth of the
component, while accuracy was understood as the devi-
ation of the wall radius from the designed CAD model.
Accuracy was thus expressed in the form of a compari-
son between the real wall radius obtained by the
Mitutoyo Coordinate Machine and the wall radius of
the CAD model, which was 25 mm. The wall radius is
shown in Fig. 3.

4 Artificial neural networks

It has often been claimed that Warren McCulloch and Walter
Pitts’ seminal study of the 1940s introduced the neural net-
work concept. Their original view of neural networks showed
that neural networks could compute any function of logic or
mathematical formula. In the late 1950s, the innovation of the
perceptron network, i.e., the first practical application of arti-
ficial neural networks, was introduced [49]. Recently, thou-
sands of papers have been published in connection with neural
networks and have been used in various sciences. Such uses
include applications by artists, filmmakers, musicians, scien-
tists, and particularly by researchers in order to produce useful
and often creative results. Artificial Neural Network (ANN)

topology could be determined based on the number of layers
(input and output layer(s)), as well as on the transfer function
of these layers and the number of neurons in each layer [50].
Any ANN structure has input and output layers and also fea-
tures a minimum of one hidden layer. There are several neu-
rons in each layer, and they exhibit a transfer function: this
allows the transfer of weight backward and forward [51]. In
this study, for the ANN model, the backpropagation learning
algorithm was used, which is called “multilayer perceptron”
(MLP) or “multilayer feed-forward.” The concept of the MLP
originated fromWerbos 1974, and Rumelhart et al. 1986 [52].
Equation 1 expresses the multilayer perceptron as follows:

y ¼ f netð Þ ¼ f ∑n
i¼1wixþ b

� � ð1Þ

where y is the output and x is input, wi are the weights, and
b is the bias [53].

In order to predict the actual data obtained from the com-
ponents formed by SPIF, two different structures of the ANN
model were built using the Neural Network Toolbox™ of
MATLAB [54]. Both structures had the same number of in-
puts: ten (different tool materials, tool shapes, tool end/corner
radiuses, and tool surface roughness values (Ra and Rz)). The
tools were classified into two groups based on their shapes
(flat and hemispherical) for the purpose of checking the effect
of the tool shape on the accuracy and formability of compo-
nents. Furthermore, each shape was divided into three sections
based on the corner radius (r) of the flat tool and the tip radius
(R) so that the effectiveness of these factors on the above-
mentioned outputs could be assessed. Each structure had one
hidden layer with ten neurons. For the experiments, different
training and transfer functions were trained (see Sections 4.2
and 4.3). The main difference between the structures was the
number of outputs, which also affected the number of neurons
in the output layer, as shown in the pictorial representation of
Fig. 7a and b. In the scope of the study, the learning rate was

Table 4 Polymer properties

Polymer Density (g/cm3) Elastic Modulus (MPa) Tensile strength (MPa) Elongation at break % Shore D Hardness

VeroWhitePlus, (RGD835) 1.19 2,500 58 25 85

Table 3 Mechanical properties of
the metallic tool Material Tensile strength Rm-MPa Yield Strength Rp 0.2-MPa Brinell hardness-HB

Steel (C45) 700 490 223

Brass (CuZn39Pb3) 500 390 186

Bronze (CuSn8) 450 300 135

Copper (E-Cu57) 395 365 88

Aluminum (AlMgSi 0.5) 215 160 73
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0.01, the performance goal was 0.001, and the number of
epochs was 1000.

4.1 One-hot encoding

One-hot encoding is the common method of describing cate-
gorical variables, also known as dummy variables [55]. The
concept behind one-hot encoding is to substitute a categorical
variable with one or more new features. Through the replace-
ment of the categorical inputs with values 0 and 1, these cat-
egorical inputs will sparse-binarize and can be included as a
feature for training the ANN model. In this study, two sets of
data were encoded. Furthermore, tool materials and tool
shapes were binarized as sparse matrices of 0 and 1. It must
be considered that when one material is active as number 1, all
other materials are encoded as 0, and so on.

4.2 Training function

In a Neural Network (NN), optimization is a procedure used
for training a dataset to tune and for finding a set of network

weights to create a good map for prediction. Different optimi-
zation algorithms (training functions) can be used in the train-
ing process to predict the output from a given input. The
training algorithm relies on many factors including, and not
limited to, the data set, the number of weights and biases, and
the performance goal. Hence, selecting the proper training
algorithm to be the fastest and best in the scope of a prediction
is a challenging task. With this in mind, various types of
training-function “learning algorithms” were implemented in
the scope of this paper for mapping output parameters.
Training functions used for that purpose were Levenberg-
Marquardt (Trainlm), Conjugate Gradient Backpropagation
with Powell-Beale Restarts (Traincgb), Resilient
Backpropagation (Trainrp), Bayesian Regularization
Backpropagation (Trainbr), BFGS Quasi-Newton (Trainbfg),
and Scaled Conjugate Gradient (Trainscg). Levenberg-
Marquardt is faster compared to other training functions and
more agile; and likewise, the BFGS Quasi-Newton algorithm
is also quite fast [54].

4.3 Transfer function

There are different types of transfer functions, and selecting an
appropriate one depends onmany factors: particularly the type

a b

R 25 mm
Wall radius

R 30 mm

R 20 mm

Fig. 2 a Frustum geometry. b Tool schematic

Crack

Real wall

radius

Fig. 3 Failed specimen Fig. 4 Rapid clamping rig on the CNC milling table

Table 5 Tool geometry details

Tools Geometry D (mm)
Corner radius r (mm)
Spherical radius R (mm)

Flat end r = 0.1 4

r = 0.3 4

r = 0.5 4

Hemispherical end R = 1 2

R = 2 4

R = 3 6
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of ANN. In a NN, the sums of each layer are weighted, and the
summed weights undergo a transfer function. Finally, transfer
functions calculate a layer’s output from the summed weights
that entered a layer. Usually, Log-sigmoid (Logsig) is used in
multilayer networks; other functions such as Tan-sigmoid
(Tansig) can be an alternative, and this latter is usually used
for pattern recognition problems [54]. Nevertheless, in this
study, various types of transfer functions were executed, and
different training functions were conducted to improve predic-
tion accuracy. Ultimately, the Purelin transfer function was
selected for the output layer. Table 6 lists the algorithm of
the transfer function used for the purpose of this study.

4.4 Dataset distribution

The historical data of formed components can be used as
inputs in order to predict the expected outcome of forming
without performing any new process of forming. Actual data
must be divided into different subsets: i.e., training, validation,
and testing datasets. The performance of any model can be

significantly affected by the splitting of the dataset into train-
ing and testing data. Shahin [56] claimed that there is no clear
relationship between the ratio of the data of different subsets.
Zhang et al. [57] describe that one of the primary dataset
problems is the dividing ratio, and this problem has no general
setting as a solution. Based on their survey, the researchers
divided their datasets in line with a different ratio of subsets.
The most extensively used ratios are 90% vs. 10%, 80% vs.
20%, or 70% vs. 30%. In fact, unbalanced subsets negatively
affect model performance. In the trials conducted in the scope
of this paper, optimal prediction resulted from the data of
subsets 80% vs. 20% of the actual data concerning training
and testing datasets, respectively. To assure that the model
learned and assessed all data samples, the dataset of the train-
ing had to be divided into validation and test subsets.
Accordingly, the training dataset, which is 80% of the whole
dataset, was divided into 90% for training, 5% for validation
and the remaining 5% for testing. It should be noted that the
testing dataset (20%) did not include the training dataset,
which was stored for final testing purposes. Concerning the
actual dataset, there is 108 rows extracted from the experi-
ments of forming the given sheet using SPIF, and these rows
were used as training and testing datasets.

4.5 Overfitting

Overfitting happens if the model takes into consideration
variables such as the noise or random fluctuations of the
trained data as learning data and considers it as one of the
model’s concepts. As a result, this function affects new
data saved for testing purposes. Consequently, this con-
cept produces a model that yields good performance on
the training dataset but does not perform so effectively on
a new sample dataset used as a test sample. In order to
ensure that the trained model did not exhibit features of
overfitting, 20% of the real data was saved for the
model’s final testing. In this set-up and for the purpose
of preventing overfitting, regularization discouraged the
learning of a more complex or flexible model. Another
solution to reduce overfitting is to reduce the complexity
of a NN model. One possible method of improving net-
work generalization is to adjust the value of weights by
changing network parameters. As a consequence, control-
ling the complexity of a model is achieved through the
use of regularization [58]. The second method of improv-
ing generalization is called early stopping. Using this
technique, training data, which constitutes 80% of the
entire actual data set, is divided into three subsets: train-
ing, validation, and test subsets. The training data set is
employed to compute the gradient and modernizing
weights and biases of the network, whereas the validation
set is for monitoring the error as the training process runs.
The third subset is the test set, which plots the error

Magnetic base

Measuring jaw

Digital display

Component

Fig. 6 Mitutoyo digimatic height gage

SPIF component

Measuring tipComponent profile

Clamping rig

Fig. 5 Mitutoyo coordinate machine
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during the training process. However, if the overfitting of
data commences during the training, the number of errors
will increase in the validation set. If the validation error
rises above a specified number of iterations, the training
stops, and the weights and biases return to the smallest
validation error [59].

5 Investigation of accuracy

There are many different metrics for validation but using the
proper validation metric is an important consideration in the
evaluation and improvement of model performance. In this
study, different structures and various training and transferring
algorithms were compared and validated. The criteria of

validation consist in minimizing error. The coefficient of deter-
mination (R2) and adjusted determination (adj. R2) are used for
checking the models and structures in question since an (R2)
value close to 1 implies good performance. Moreover, Root
Mean Square Error (RMSE) and Mean Absolute Error
(MAE) were also used for validation. In fact, RMSE is more
sensitive to error if MAE is more stable. In fact, RMSE and
MAE have better evaluation metrics compared to (R2) due to
the latter’s limitation listed in [60]. Better performance of the
model is indicated by a situationwhereMAE and RMSE values
are close to 0. Even so, the significant variance between RMSE
andMAE values means large variations in error distribution. In
this study,Mean Relative Error (MRE) was used tomeasure the
precision of the model, as it is clear that absolute error is the
magnitude of the difference between the actual and predicted

Table 6 Details of the transfer function

Transfer function Abbreviation Graph Algorithms

Linear Purelin f(x) = purelin(x) = x

Log-sigmoid Logsig f(x) = logsig(x) = 1 / (1 + exp(-x))

Hyperbolic tangent sigmoid Tansig f(x) = tansig(x) = 2/ (1+exp(-2* x))-1

Softmax Softmax f(x) = softmax(x) = exp(x)/sum(exp(x))

Radial basis Radbas f(x) = radbas(x) = exp (-x ^2)

Triangular basis Tribas
f(x) = tribas(x) = 1 - abs(x), if -1 <= x <= 1

= 0, otherwise

where x is the weighted sum of wi, b, and y of Eq. 1.

Fig. 7 Different ANN structures: a one output; b two outputs
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values; hence, the relative error is the absolute error divided by
the magnitude of the actual value. The distribution of prediction
values was validated via Standard Error Mean (SEM), where
SEM is the standard deviation of the sampling distribution of
the sample mean. In other words, the variance of the sample
means is inversely proportionate to the sample size, and SEM is
the original Standard Deviation (SD) of the sample size over the
square root of the sample size. It is worth pointing out that the
sample size is 108 for the entire dataset, while 86 for training,
and 22 for testing. Error (E), Mean Error (ME), Mean Square
Error (MSE), and Standard Deviation (SD) were applied for
deriving the validation equations, as mentioned earlier; (R2)
and (adj. R2) were derived from the Total Sum of Square
(SStot) and the Sum of the Square of Residuals (SSres). The
validation equations can be represented as follows:

E ¼ yactuali −ypredicti

� �
ð2Þ

ME ¼ 1

n
∑n

i¼1 yactuali −ypredicti

� �
or ME ¼ 1

n
∑n

i¼1 Eð Þ ð3Þ

MAE ¼ 1

n
∑n

i¼1 yactuali −ypredicti

������� �
or MAE ¼ 1

n
∑n

i¼1 Ejjð Þ ð4Þ

MSE ¼ 1

n
∑n

i¼1 yactuali −ypredicti

� �2
or MSE ¼ 1

n
∑n

i¼1 Eð Þ2 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð6Þ

MRE ¼ 1

n
∑n

i¼1

yactuali −ypredicti

yactuali

�����
�����

 !
or MRE ¼ 1

n
∑n

i¼1

E
yactuali

����
����

� 	
ð7Þ

E ¼ ypredicti −yactuali

� �
ð8Þ

ME ¼ 1

n
∑n

i¼1 ypredicti −yactuali

� �
ð9Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1
∑n

i¼1 E−ME
� �2r

ð10Þ

SEM ¼ SDffiffiffi
n

p ð11Þ

y ¼ 1

n
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i¼1 yactuali

� � ð12Þ
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i¼1 yactuali −y
� �2
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� �2
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R2 ¼ SStot−SSres
SStot
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thus:
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6 Contribution analysis of input variables

There are different methods to assess the contribution of each
input variable on ANN outputs. For the generation of a depen-
dent variable, this paper utilized Garson’s algorithm [61] to
determine the relative importance (RI) of the various inputs as
a predictor of predicted outputs. The Garson method was also
used in different studies as underpinned by [62–67]. The al-
gorithm, as shown in Eq. 19, is based on the connection
weights of the neurons. Goh [68] applied the Garson algo-
rithm and claimed that RI estimation requires partitioning of
the hidden output weights into elements connected to each
neuron in the input layers.

RI %ð Þ ¼ ∑nh
j¼1

yv j=∑
nv
k¼1 yk j

�
Oj

i
∑
nv

y¼1
∑nh

j¼1 yv j=∑
nv
k¼1 yk j

�
Oj

i�h
0
BB@

2
664 ð19Þ

where:

nv number of neurons in the input layer,
nh number of neurons in the hidden layer,
yj absolute value of connection weights between the input

and the hidden layers,
Oj absolute value of connection weights between the hidden

and the output layers.

7 Results and discussion

For the purpose of inspecting the accuracy of different ANN
models and for producing comparisons between the two struc-
tures, errors of predicted results were analyzed to determine
the ANN’s performance. The errors extracted from the results
were subjected to various validation metrics.

7.1 One-output structure

7.1.1 Prediction of accuracy

Table 7 illustrates two validationmetrics used for checking the
one-output ANN structure (the prediction of the accuracy of

2599Int J Adv Manuf Technol (2021) 114:2591–2615



SPIF components). It can be seen from the data that Scaled
Conjugate Gradient (Trainscg) achieved the best values: near
to zero concerning MSE and up to 1 concerning R2.

From the data shown in Fig. 8a, it is clear that there is a
significant disparity (MSE = 0.1503, R2 = 0.9909) between the
different transfer functions in favor of Radbas when the
Trainscg training function is run. It can be seen from Fig. 8b
that R2 and MSE differed slightly when the Radbas transfer
function with various training functions was used, but the
highest R2 and smallest MSE were found in the case of
Trainscg. With reference to this, Fig. 8 exhibits a one-output

structure of the ANN used for predicting the accuracy value of
SPIF components.

7.1.2 Prediction of formability

Regarding the prediction of formability via the one-output
ANN, the differences between training and transfer functions
are highlighted in Table 8. There is a significant positive cor-
relation between Trainbfg and Logsig. Therefore, the results
indicate that the smallest (MSE) is 0.0351, and the largest (R2)
is 0.9860. Concerning formability, the same values of (MSE)

Table 7 Two validation metrics for checking the ANN structure used for predicting accuracy (one-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Transfer function Logsig Purelin Radbas Softmax Tansig Tribas

Validation metrics MSE 0.2734 3.6239 0.3960 0.5797 0.3889 2.8790

R2 0.9834 0.7796 0.9759 0.9648 0.9764 0.8249

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Validation metrics MSE 0.3804 3.6181 0.4926 0.7858 0.4278 1.6239

R2 0.9769 0.7800 0.9700 0.9522 0.9740 0.9013

Training function Conjugate Gradient Backpropagation (Traincgb)

Validation metrics MSE 0.2067 3.6055 0.2992 0.4847 0.2877 1.1252

R2 0.9874 0.7807 0.9818 0.9705 0.9825 0.9316

Training function Levenberg-Marquardt (Trainlm)

Validation metrics MSE 0.1968 3.5999 0.2602 0.4523 0.2162 1.3350

R2 0.9880 0.7811 0.9842 0.9725 0.9869 0.9188

Training function Resilient Backpropagation (Trainrp)

Validation metrics MSE 0.4162 3.6117 0.3062 0.4429 0.3992 0.6687

R2 0.9747 0.7804 0.9814 0.9731 0.9757 0.9593

Training function Scaled Conjugate Gradient (Trainscg)

Validation metrics MSE 0.3558 3.6056 0.1503 0.4779 0.3172 0.9182

R2 0.9784 0.7807 0.9909 0.9709 0.9807 0.9442

Fig. 8 MSE and R2 values for predicted results in the case of the ANN model: one-output structure for predicting accuracy of SPIF components. a
Various transfer functions using Trainscg. b Various training functions using Radbas
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and (R2) as the ones in Fig. 8 can be established based on the
values listed in Table 8.

7.1.3 Assessment of the best ANN models for predicting
accuracy and formability in the case of the one-output
structure

Table 9 presents the setout scenario for validating the ANN
model: the use of Trainscg for predicting accuracy and the use
of Trainbfg for predicting formability vis a vis the application
of the Radbas and Logsig transfer functions, respectively. An
overview of all metrics values of the validation was used for
comparing the various training and transfer functions; this
process is listed in the Appendix as Tables 14 and 15. Such
values are related to the one-output ANN structure and were
used to predict the accuracy and formability of SPIF parts.
Together these results provide valuable insights and suggest

the following: positive error means that the predicted value is
larger than the actual value, and a negative error means that
the predicted value is lower than the actual value.

Figure 9a and b compares two trials of prediction
concerning accuracy and formability in addition to their vari-
ation with the actual data obtained from SPIF experiments.
There is a clear trend of fitting between predicted values and
real data. Moreover, Fig. 10a and b clearly shows a significant
positive correlation between predicted and actual datasets.

7.2 Two-output structure

Two discrete analyses emerge by comparing the values of
ANN in terms of output numbers. First, the rate of the smallest
(MSE) was obtained during accuracy prediction: 99.8611%
vs. 0.1389% for one and two outputs, respectively. Second,
regarding formability, 99.7778% vs. 0.2222% was the (MSE)

Table 8 Two validation metrics for checking the ANN structure used for predicting formability (one-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Transfer function Logsig Purelin Radbas Softmax Tansig Tribas

Validation metrics MSE 0.0351 1.0904 0.4904 0.4595 0.0988 1.2607

R2 0.9860 0.5648 0.8043 0.8166 0.9606 0.4968

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Validation metrics MSE 0.6014 1.1936 0.5658 0.5646 0.5604 0.6901

R2 0.7600 0.5236 0.7742 0.7747 0.7763 0.7246

Training function Conjugate Gradient Backpropagation (Traincgb)

Validation metrics MSE 0.1029 1.0892 0.5076 0.3966 0.1423 0.6756

R2 0.9589 0.5653 0.7974 0.8417 0.9432 0.7304

Training function Levenberg-Marquardt (Trainlm)

Validation metrics MSE 0.0972 1.0871 0.0821 0.2877 0.3431 0.5794

R2 0.9612 0.5661 0.9672 0.8852 0.8631 0.7687

Training function Resilient Backpropagation (Trainrp)

Validation metrics MSE 0.2660 1.0887 0.4272 0.3933 0.3815 0.5292

R2 0.8938 0.5655 0.8295 0.8430 0.8477 0.7888

Training function Scaled Conjugate Gradient (Trainscg)

Validation metrics MSE 0.0626 1.0901 0.3778 0.4728 0.1586 0.6666

R2 0.9750 0.5649 0.8492 0.8113 0.9367 0.7340

Table 9 Assessment of the best ANN models in the case of different validation metrics (one-output structure)

Trainscg training function with Radbas transfer function for predicting accuracy

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Accuracy − 0.0027 0.2005 0.1503 0.3876 0.0367 0.3894 0.0375 0.9909 0.9909

Trainbfg training function with Logsig transfer function for predicting Formability

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Formability − 0.0131 0.1077 0.0351 0.1874 0.0066 0.1878 0.0181 0.9860 0.9859
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rate for one and two-output structures, respectively. However,
there are several possible explanations of the poor results that
originate from two-output structures as compared to the one-
output structure. One main reason for these results may be the
fluctuation of each output, which are located far from one
another, and there is also an enormous difference between
the inputs. This is explained by the fact that accuracy values
are between 1 and 17 mm, and formability values (maximum
depth) are between 10 and 20 mm. The most striking result
emerging from the data is that the best prediction is obtained
in the two-output structure of Trainlim with Logsig. For the
sake of clarity, Table 10 shows the errors of this two-output
structure model. Furthermore, the full results are shown in the
Appendix as Table 16 and Table 17

7.3 Training and testing assessment of the best ANN
models for the one-output structure

A comparison of the results reveals that the suggested struc-
ture of ANN is the one-output argument structure, which

concurrently utilizes the Trainscg training function and the
Radbas transfer function. This scenario offered the best pre-
diction of accuracy. It is important to note that Trainbfg and
Logsig emerged as a reliable method of the prediction of
formability. Therefore, these results were to be interpreted in
the light of numerous analyses and details. Consequently, the
actual data were divided into two major sets: training and
testing, with values of 80% with 20%, respectively, as
discussed in Section 4.4. The suggested structure and model
were run on the training datasets and were tested for prediction
using a test dataset. Table 11 lists the errors and validation
metrics of training and testing prediction resulting from the
model, as described above.

The accuracy model was also successful in prediction, but
its operation was coupled with an insignificant decrease in
performance. Here, one unanticipated finding was that the
accuracy of the prediction of formability decreased consider-
ably. An emerging issue from these findings is that a reduction
in the sample size leads to an increase in error and causes a
decrease in performance. Moreover, the one-output ANN
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model cannot be extrapolated to different sample sizes. In
addition, it is important to bear in mind the presence of possi-
ble bias in these responses. Consequently, various models
were investigated in an attempt to find an alternative model
capable of predicting formability more accurately. As a result,
the alternative model using Traincgb with Logsig was found
to be capable of successfully predicting formability, as shown
in Table 12.

7.4 Analytical equations to predict the accuracy and
formability of SPIF

For finding an alternative method of predicting formability
and accuracy in an easy and more accurate way, rather than
having to build a NN model each time, analytical equations
that could predict the accuracy and formability of SPIF were
envisaged to be used in place of the approved network.
Therefore, two equations (23 and 27) were established, which
required constant weights and biases extracted from the

recommended ANN network. The ANN network tuning pro-
vided the weights and biases necessary for achieving the best
prediction. In this study, due to the fact that only one hidden
layer was applied, there was only one set of input weight (IW)
and layer weight (LW). The IW is between the inputs and the
hidden layer, and the LW is situated between the hidden layer
and the output layer. The biases for each layer are b1 and b2.

Tables 18 and 19 in the Appendix provide (b1), (b2), (IW),
and (LW) obtained from the best trained ANN model regard-
ing accuracy (as shown in Table 18 in the Appendix) and
formability (as shown in Table 19).

f xð Þ ¼ Radbas xð Þ ¼ exp −x2
� � ð20Þ

Accuracypredicti ¼ b2 þ LW � Radbas b1 þ IW � xð Þ ð21Þ
Accuracypredicti ¼ b2 þ LW � exp − b1 þ IW � xð Þ2

� �
ð22Þ
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Table 10 Assessment of the best ANN models in the case of different validation metrics (two-output structure)

Two-output structure—Trainlim training function with Logsig transfer function

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Accuracy 0.0268 0.3123 0.2868 0.5355 0.0656 0.5373 0.0517 0.9826 0.9824

Formability − 0.0098 0.2403 0.2964 0.5444 0.0158 0.5469 0.0526 0.8817 0.8643

Table 11 Assessment of the best ANN models (training and testing) in the case of different validation metrics (one-output structure)

Accuracy (Trainscg with Radbas)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Training − 0.0230 0.4111 0.3486 0.5904 0.0788 0.5934 0.0640 0.9795 0.9792

Testing 0.0393 0.7714 1.1081 1.0527 0.1104 1.0767 0.2295 0.9171 0.9370

Formability (Trainbfg with Logsig)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Training 0.0139 0.3338 0.4439 0.6663 0.0220 0.6700 0.0723 0.8162 0.7783

Testing − 0.4356 0.5891 0.8301 0.9111 0.0333 0.8191 0.1746 0.7080 0.4874
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where: LW = [6.4552 -2.1276 2.7984 7.8625 4.7908 4.3514 -
6.4366 -4.2600 2.3087 4.7381]

f xð Þ ¼ Logsig xð Þ ¼ 1

1þ exp −xð Þð Þ ð24Þ

Formabilitypredicti ¼ b2 þ LW � Logsig b1 þ IW � xð Þ ð25Þ
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� 1
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where LW = [1.7159 1.0223 -1.0223 3.9185 -17.628 16.1231
3.1300 25.4021 25.2140 1.1739]

7.5 Relative importance

With regards to the relative importance and weights analysis
of the neural network, it can be seen that the most significant
factor in Fig. 11a is the tool-end radius with a RI of 29%
concerning accuracy, while tool surface roughness (Ra and
Rz) has the lowest effect. Another interesting observation,
based on Fig. 11b, is that the tool-end radius with a RI of
54% is the most influential factor with respect to formability.

Secondly, in the prediction process, tool shape and tool sur-
face roughness (Ra) with a relative importance of 24% and
28%, respectively, were as important as effects on accuracy
and formability. However, concerning accuracy and formabil-
ity, a striking difference in the RI ratios of the tool-end radius
can be noticed. In addition, tool material can also be consid-
ered as a powerful factor in determining accuracy.

In the scope of this study, the tools were created by a turning
machine under identical machining conditions. However, as
mentioned in Section 2, different materials with varying values
of hardness were used for producing the tools. Due to that sce-
nario, this resulted in differing values of surface roughness of the

Table 12 Assessment of the best alternative ANN models (training and testing) in the case of different validation metrics for predicting formability
(one-output structure)

Formability (Traincgb with Logsig)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Training − 0.0108 0.2217 0.1570 0.3962 0.0139 0.3984 0.0430 0.9372 0.9327

Testing 0.0854 0.4757 0.3664 0.6053 0.0300 0.6134 0.1308 0.8530 0.8375

Tool Materials
21%

Tool Shape
24%Tool end radius

29%

Tool Ra
8%

Tool Rz
18%

a Tool Materials
9%

Tool Shape
7%

Tool end radius
54%

Tool Ra
28%

Tool Rz
2%

b

Fig. 11 Relative importance of different input variables, a accuracy; b formability
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tools; and this, in turn, impacted the surface roughness of the final
products formed using SPIF. High roughness of the tool tears the
wall of the components and causes low depth: this depth is con-
sidered a value of formability, as previously mentioned.
Similarly to the research presented in the scope of this paper,
Hagan and Jeswiet [69] analyzed the influence of several forming
variables, such as step-down size and spindle speed on surface
roughness in the scope of an ISF process. They claim that tool
hardness and its polished surface not only affect depth increment
tests but concurrently also result in impacts on the surface rough-
ness of the final product.WhatHagan and Jeswiet found explains
the change in tool surface roughness identified in the current
study: this phenomenon can be explained by changes in form-
ability. As a result of differences in the roughness of the forming
tools, differing surface roughness of the products was observed.
The latter causes differences in forming depth, which is consid-
ered an attribute of formability.

8 Conclusion

This study presented different models and structures of ANN
for predicting the accuracy and formability of SPIF compo-
nents produced from thin aluminum alloy blanks. The main
goal of the study was to determine the best model and archi-
tecture for that purpose. The most significant finding from the
study was that the structure of a one-output solution showed
better results than a network with two outputs. The second
significant finding was that Trainscg and Trainbfg, as a train-
ing function together with Radbas and Logsig as a transfer
function, achieved the best prediction concerning accuracy
and formability. In the scope of the experiments, the results
were assessed using different validation metrics; the highest
R2 values were 0.9909 and 0.9860, and the lowestMSE values
were 0.1503 and 0.0351 for accuracy and formability, respec-
tively. In fact, this research project marks the first time that the
relative importance (RI) method was used to assess SPIF fac-
tors on outputs. RI revealed that the tool end radius is an
effective factor that impacts accuracy and formability with
values of 29% and 54%, respectively. Tools with different

materials exhibit diverse hardness, which causes different sur-
face strains. This also holds true regarding tool geometry.
Nevertheless, it is a noteworthy finding to point out that two
tools from two different materials with identical geometry will
cause different surface strains; consequently, they will have
different effects on components. Differing values of hardness
result in varying tool tip surface roughness, which thereby
affect sheet accuracy and formability. Tool shapes together
with tool materials are also influential factors, which impact
accuracy by 24% and 21%, respectively. Following the tool
radius with a value of 28%, tool surface roughness (Ra) is the
second most effective factor concerning formability output.
Finally, tool surface roughness (Ra) and (Rz) with values of
8% and 2% for each factor, respectively, were found to be the
least influential factor on accuracy and formability.
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Appendix

Table 13 Raw data of the experiments (input and output data)

Tool materials Tool shapes Tool radius Tool arithmetical mean
roughness (Ra)

Tool ten-point mean
roughness (Rz)

Responses

Flat = 1
Hemispherical = 0

Corner radius r (mm)
Spherical radius R (mm)

Maximum
Depth (mm)

Accuracy
Deviation (mm)

Copper 1 0.1 0.23 3.76 17.89 2.053

1 0.1 0.06 0.73 17.59 3.653
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Table 13 (continued)

Tool materials Tool shapes Tool radius Tool arithmetical mean
roughness (Ra)

Tool ten-point mean
roughness (Rz)

Responses

Flat = 1
Hemispherical = 0

Corner radius r (mm)
Spherical radius R (mm)

Maximum
Depth (mm)

Accuracy
Deviation (mm)

1 0.1 0.14 2.24 17.74 2.853

1 0.3 0.32 5.54 17.60 3.645

1 0.3 0.05 0.65 17.34 4.760

1 0.3 0.19 3.10 17.47 4.203

1 0.5 0.13 3.34 17.62 3.763

1 0.5 0.05 0.45 18.60 4.954

1 0.5 0.09 1.29 18.21 5.878

0 1 0.12 3.50 18.03 5.752

0 1 0.10 1.08 19.09 4.195

0 1 0.11 2.29 18.56 4.974

0 2 0.09 0.66 15.47 12.508

0 2 0.04 0.64 15.35 13.830

0 2 0.06 0.65 15.41 13.169

0 3 0.21 1.84 14.45 13.977

0 3 0.12 2.02 14.76 13.379

0 3 0.16 1.93 14.61 13.678

Aluminum 1 0.1 0.12 1.16 16.56 5.910

1 0.1 0.13 1.22 16.80 5.291

1 0.1 0.12 1.19 16.68 5.601

1 0.3 0.09 1.04 17.25 5.650

1 0.3 0.08 0.61 17.32 5.166

1 0.3 0.06 0.60 12.25 4.837

1 0.5 0.08 0.64 16.93 7.203

1 0.5 0.07 0.49 16.90 7.110

1 0.5 0.04 0.63 16.18 5.707

0 1 0.47 5.76 18.06 5.424

0 1 0.22 8.18 17.20 9.248

0 1 0.34 6.97 17.63 7.336

0 2 0.33 3.51 15.26 12.396

0 2 0.06 1.82 17.00 6.760

0 2 0.20 2.66 16.13 9.578

0 3 0.36 3.92 14.32 13.101

0 3 0.12 2.08 14.11 14.602

0 3 0.24 3.00 14.22 13.852

Brass 1 0.1 0.22 3.50 17.10 4.172

1 0.1 0.20 2.38 16.90 4.181

1 0.1 0.21 2.94 17.00 4.177

1 0.3 0.11 2.04 17.18 4.776

1 0.3 0.12 1.39 17.24 5.769

1 0.3 0.12 1.95 10.87 5.917

1 0.5 0.16 2.00 17.38 6.126

1 0.5 0.07 1.41 17.47 6.942

1 0.5 0.02 0.24 17.20 6.468

0 1 0.40 3.96 17.77 6.246

0 1 0.13 1.66 17.44 6.533

0 1 0.27 2.81 17.61 6.390
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Table 13 (continued)

Tool materials Tool shapes Tool radius Tool arithmetical mean
roughness (Ra)

Tool ten-point mean
roughness (Rz)

Responses

Flat = 1
Hemispherical = 0

Corner radius r (mm)
Spherical radius R (mm)

Maximum
Depth (mm)

Accuracy
Deviation (mm)

0 2 0.43 3.24 16.52 10.629

0 2 0.16 4.38 16.06 11.069

0 2 0.30 3.81 16.29 10.849

0 3 0.34 3.25 13.60 15.900

0 3 0.06 1.07 14.38 14.529

0 3 0.20 2.16 13.99 15.215

Bronze 1 0.1 0.93 11.22 16.73 4.798

1 0.1 0.27 3.78 16.59 3.445

1 0.1 0.60 7.50 16.66 4.122

1 0.3 0.23 8.61 16.92 5.277

1 0.3 0.18 4.21 16.84 6.386

1 0.3 0.20 6.41 16.88 5.832

1 0.5 0.38 6.20 17.10 6.584

1 0.5 0.13 1.57 17.75 5.753

1 0.5 0.03 0.24 17.91 5.125

0 1 0.20 2.06 17.42 7.240

0 1 0.08 0.67 17.73 7.405

0 1 0.14 1.36 17.58 7.323

0 2 0.16 1.43 15.56 12.544

0 2 0.05 0.57 15.48 12.992

0 2 0.10 1.00 15.52 12.768

0 3 0.03 0.32 14.29 14.478

0 3 0.02 0.21 14.67 12.292

0 3 0.04 0.40 14.91 13.059

Polymer 1 0.1 0.03 0.36 15.75 9.345

1 0.1 0.03 0.36 15.13 5.189

1 0.1 0.03 0.36 15.44 7.267

1 0.3 0.12 2.35 15.15 8.308

1 0.3 0.02 0.30 14.68 8.424

1 0.3 0.07 1.33 14.92 8.366

1 0.5 0.04 0.61 15.81 8.556

1 0.5 0.07 0.91 16.35 5.865

1 0.5 0.05 1.13 15.83 6.324

0 1 0.27 3.17 15.52 11.687

0 1 0.32 4.33 15.09 15.020

0 1 0.30 3.75 15.31 13.354

0 2 0.21 3.21 15.38 8.927

0 2 0.09 0.91 15.19 12.400

0 2 0.15 2.06 15.29 10.664

0 3 0.19 2.33 15.09 12.166

0 3 0.08 1.11 15.48 9.760

0 3 0.13 1.72 15.29 10.963

Steel 1 0.1 0.47 3.71 18.04 2.438

1 0.1 0.43 5.92 18.97 1.07

1 0.1 0.45 4.82 18.51 1.754

1 0.3 0.49 4.94 17.95 1.144
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Table 13 (continued)

Tool materials Tool shapes Tool radius Tool arithmetical mean
roughness (Ra)

Tool ten-point mean
roughness (Rz)

Responses

Flat = 1
Hemispherical = 0

Corner radius r (mm)
Spherical radius R (mm)

Maximum
Depth (mm)

Accuracy
Deviation (mm)

1 0.3 0.58 5.92 18.46 3.435

1 0.3 0.53 5.43 18.21 2.2895

1 0.5 0.74 5.37 19.17 4.063

1 0.5 0.61 7.91 19.19 5.256

1 0.5 0.67 6.64 19.18 4.6595

0 1 0.07 0.70 19.11 4.279

0 1 0.08 1.39 17.42 10.863

0 1 0.07 1.05 18.27 7.571

0 2 0.04 0.45 14.79 14.688

0 2 0.06 0.82 14.98 15.294

0 2 0.05 0.64 14.89 14.991

0 3 0.04 0.40 13.53 16.8

0 3 0.06 0.51 14.52 13.13

0 3 0.05 0.45 14.03 14.965

Table 14 Validation metrics of all ANN models for predicting accuracy (one-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Transfer function Logsig 0.0018 0.2982 0.2734 0.5229 0.0509 0.5254 0.0506 0.9834 0.9834

Purelin 0.0789 1.4223 3.6239 1.9037 0.2423 1.9109 0.1839 0.7796 0.7215

Radbas 0.0445 0.3702 0.3960 0.6293 0.0699 0.6307 0.0607 0.9759 0.9754

Softmax 0.0036 0.5027 0.5797 0.7613 0.0794 0.7649 0.0736 0.9648 0.9632

Tansig 0.0068 0.3640 0.3889 0.6236 0.0621 0.6265 0.0603 0.9764 0.9763

Tribas − 0.0362 1.3145 2.8790 1.6968 0.2784 1.7043 0.1640 0.8249 0.7964

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Transfer function Logsig − 0.0436 0.4199 0.3804 0.6168 0.0719 0.6181 0.0595 0.9769 0.9756

Purelin − 0.0052 1.4344 3.6181 1.9021 0.2426 1.9110 0.1839 0.7800 0.7271

Radbas − 0.0244 0.4958 0.4926 0.7019 0.0862 0.7047 0.0678 0.9700 0.9685

Softmax − 0.0241 0.6550 0.7858 0.8865 0.1061 0.8903 0.0857 0.9522 0.9490

Tansig − 0.0143 0.4541 0.4278 0.6541 0.0771 0.6570 0.0632 0.9740 0.9728

Tribas − 0.0393 0.9323 1.6239 1.2743 0.1555 1.2796 0.1231 0.9013 0.8797

Training function Conjugate Gradient Backpropagation (Traincgb)

Transfer function Logsig − 0.0278 0.2600 0.2067 0.4546 0.0412 0.4559 0.0439 0.9874 0.9873

Purelin − 0.0337 1.4442 3.6055 1.8988 0.2451 1.9074 0.1835 0.7807 0.7156

Radbas 0.0126 0.3245 0.2992 0.5470 0.0689 0.5494 0.0529 0.9818 0.9816

Softmax 0.0313 0.4749 0.4847 0.6962 0.0789 0.6988 0.0672 0.9705 0.9698

Tansig 0.0198 0.3000 0.2877 0.5364 0.0518 0.5385 0.0518 0.9825 0.9824

Tribas 0.1015 0.7469 1.1252 1.0608 0.1661 1.0608 0.1021 0.9316 0.9239

Training function Levenberg-Marquardt (Trainlm)

Transfer function Logsig 0.0753 0.1401 0.1968 0.4436 0.0277 0.4392 0.0423 0.9880 0.9878
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Table 14 (continued)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Purelin − 0.0187 1.4314 3.5999 1.8973 0.2418 1.9061 0.1834 0.7811 0.7222

Radbas 0.0038 0.3081 0.2602 0.5101 0.0505 0.5125 0.0493 0.9842 0.9844

Softmax 0.0056 0.4105 0.4523 0.6725 0.0678 0.6756 0.0650 0.9725 0.9722

Tansig 0.0204 0.1510 0.2162 0.4650 0.0194 0.4667 0.0449 0.9869 0.9870

Tribas − 0.0985 0.8055 1.3350 1.1554 0.1314 1.1566 0.1113 0.9188 0.9118

Training function Resilient Backpropagation (Trainrp)

Transfer function Logsig − 0.0444 0.4074 0.4162 0.6451 0.0655 0.6466 0.0622 0.9747 0.9739

Purelin 0.0142 1.4284 3.6117 1.9004 0.2399 1.9092 0.1837 0.7804 0.7349

Radbas 0.0581 0.3355 0.3062 0.5533 0.0639 0.5529 0.0532 0.9814 0.9812

Softmax − 0.0032 0.4480 0.4429 0.6655 0.0775 0.6686 0.0643 0.9731 0.9722

Tansig − 0.0301 0.3853 0.3992 0.6318 0.0633 0.6340 0.0610 0.9757 0.9746

Tribas 0.0241 0.5264 0.6687 0.8177 0.0903 0.8212 0.0790 0.9593 0.9582

Training function Scaled Conjugate Gradient (Trainscg)

Transfer function Logsig 0.0208 0.4009 0.3558 0.5965 0.0779 0.5989 0.0576 0.9784 0.9778

Purelin − 0.0190 1.4304 3.6056 1.8989 0.2392 1.9076 0.1836 0.7807 0.7314

Radbas − 0.0027 0.2005 0.1503 0.3876 0.0367 0.3894 0.0375 0.9909 0.9909

Softmax − 0.0274 0.4693 0.4779 0.6913 0.0777 0.6940 0.0668 0.9709 0.9702

Tansig 0.0030 0.3495 0.3172 0.5632 0.0609 0.5658 0.0544 0.9807 0.9804

Tribas 0.0012 0.7222 0.9182 0.9582 0.1510 0.9627 0.0926 0.9442 0.9372

Table 15 Validation metrics of all ANN models for predicting formability (one-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Transfer function Logsig − 0.0131 0.1077 0.0351 0.1874 0.0066 0.1878 0.0181 0.9860 0.9859

Purelin 0.0374 0.7101 1.0904 1.0442 0.0462 1.0484 0.1009 0.5648 0.2314

Radbas − 0.0360 0.3395 0.4904 0.7003 0.0218 0.7026 0.0676 0.8043 0.7756

Softmax − 0.0289 0.3588 0.4595 0.6778 0.0235 0.6804 0.0655 0.8166 0.7714

Tansig − 0.0021 0.2251 0.0988 0.3143 0.0139 0.3157 0.0304 0.9606 0.9584

Tribas − 0.0185 0.8515 1.2607 1.1228 0.0542 1.1279 0.1085 0.4968 − 0.1010

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Transfer function Logsig 0.0031 0.4246 0.6014 0.7755 0.0280 0.7791 0.0750 0.7600 0.6613

Purelin − 0.3194 0.8159 1.1936 1.0925 0.0513 1.0496 0.1010 0.5236 0.0948

Radbas − 0.0451 0.3951 0.5658 0.7522 0.0261 0.7543 0.0726 0.7742 0.6979

Softmax − 0.0406 0.4131 0.5646 0.7514 0.0272 0.7538 0.0725 0.7747 0.7103

Tansig 0.0069 0.3992 0.5604 0.7486 0.0264 0.7521 0.0724 0.7763 0.6903

Tribas − 0.0648 0.4767 0.6901 0.8307 0.0311 0.8321 0.0801 0.7246 0.5580

Training function Conjugate Gradient Backpropagation (Traincgb)

Transfer function Logsig 0.0300 0.1619 0.1029 0.3208 0.0098 0.3209 0.0309 0.9589 0.9596

Purelin − 0.0408 0.7124 1.0892 1.0436 0.0460 1.0477 0.1008 0.5653 0.2257

Radbas − 0.0308 0.3364 0.5076 0.7125 0.0228 0.7151 0.0688 0.7974 0.7442

Softmax − 0.0120 0.3283 0.3966 0.6297 0.0214 0.6325 0.0609 0.8417 0.8118

Tansig 0.0240 0.2632 0.1423 0.3773 0.0162 0.3783 0.0364 0.9432 0.9402
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Table 15 (continued)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Tribas − 0.0456 0.5358 0.6756 0.8220 0.0347 0.8245 0.0793 0.7304 0.6433

Training function Levenberg-Marquardt (Trainlm)

Transfer function Logsig − 0.0498 0.0939 0.0972 0.3118 0.0054 0.3093 0.0298 0.9612 0.9606

Purelin − 0.0005 0.7116 1.0871 1.0426 0.0461 1.0475 0.1008 0.5661 0.2301

Radbas − 0.0126 0.1673 0.0821 0.2866 0.0104 0.2877 0.0277 0.9672 0.9664

Softmax − 0.0269 0.2711 0.2877 0.5364 0.0177 0.5382 0.0518 0.8852 0.8694

Tansig 0.0363 0.2446 0.3431 0.5857 0.0166 0.5873 0.0565 0.8631 0.8408

Tribas 0.0624 0.3139 0.5794 0.7612 0.0215 0.7622 0.0733 0.7687 0.6987

Training function Resilient Backpropagation (Trainrp)

Transfer function Logsig 0.0096 0.2330 0.2660 0.5158 0.0154 0.5181 0.0499 0.8938 0.8761

Purelin 0.0280 0.7127 1.0887 1.0434 0.0463 1.0479 0.1008 0.5655 0.2221

Radbas − 0.0063 0.2939 0.4272 0.6536 0.0197 0.6566 0.0632 0.8295 0.7969

Softmax 0.0128 0.2987 0.3933 0.6271 0.0196 0.6299 0.0606 0.8430 0.8129

Tansig − 0.0062 0.3209 0.3815 0.6177 0.0211 0.6205 0.0597 0.8477 0.8207

Tribas − 0.0078 0.3778 0.5292 0.7275 0.0250 0.7308 0.0703 0.7888 0.7402

Training function Scaled Conjugate Gradient (Trainscg)

Transfer function Logsig − 0.0091 0.1631 0.0626 0.2503 0.0101 0.2513 0.0242 0.9750 0.9746

Purelin 0.0145 0.7149 1.0901 1.0441 0.0463 1.0488 0.1009 0.5649 0.2705

Radbas 0.0009 0.2505 0.3778 0.6147 0.0168 0.6175 0.0594 0.8492 0.8300

Softmax 0.0023 0.3637 0.4728 0.6876 0.0239 0.6908 0.0665 0.8113 0.7728

Tansig − 0.0135 0.2483 0.1586 0.3982 0.0155 0.3999 0.0385 0.9367 0.9330

Tribas − 0.0180 0.4850 0.6666 0.8164 0.0316 0.8200 0.0789 0.7340 0.6275

Table 16 Validation metrics of all ANN models for predicting accuracy (two-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Transfer function Logsig − 0.0264 0.4857 0.5342 0.7309 0.0846 0.7338 0.0706 0.9675 0.9672

Purelin − 0.0330 1.4310 3.6194 1.9025 0.2398 1.9111 0.1839 0.7799 0.7141

Radbas 0.1040 0.7524 0.9998 0.9999 0.1253 0.9991 0.0961 0.9392 0.9345

Softmax 0.0366 0.5874 0.6628 0.8141 0.1031 0.8171 0.0786 0.9597 0.9587

Tansig 0.0291 0.4627 0.4118 0.6417 0.0834 0.6440 0.0620 0.9750 0.9743

Tribas − 0.1011 1.3406 3.5981 1.8969 0.2412 1.9030 0.1831 0.7812 0.7334

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Transfer function Logsig 0.0136 0.5431 0.6031 0.7766 0.0982 0.7801 0.0751 0.9633 0.9614

Purelin − 0.0752 1.4590 3.6286 1.9049 0.2455 1.9123 0.1840 0.7793 0.7064

Radbas − 0.0491 0.5885 0.6789 0.8240 0.1055 0.8263 0.0795 0.9587 0.9564

Softmax − 0.1383 0.6413 0.7877 0.8875 0.1057 0.8808 0.0848 0.9521 0.9496

Tansig − 0.0281 0.4924 0.4845 0.6960 0.0809 0.6987 0.0672 0.9705 0.9694

Tribas − 0.0245 0.8951 1.4733 1.2138 0.1688 1.2192 0.1173 0.9104 0.8894

Training function Conjugate Gradient Backpropagation (Traincgb)

Transfer function Logsig − 0.0385 0.5658 0.6924 0.8321 0.0951 0.8351 0.0804 0.9579 0.9566

Purelin − 0.0052 0.5442 0.6152 0.7843 0.0887 0.7880 0.0758 0.9626 0.9611
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Table 16 (continued)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Radbas 0.0346 0.6613 0.8680 0.9317 0.1131 0.9354 0.0900 0.9472 0.9465

Softmax − 0.0014 0.5421 0.6174 0.7857 0.0897 0.7894 0.0760 0.9625 0.9612

Tansig 0.0267 0.5519 0.5439 0.7375 0.0890 0.7404 0.0712 0.9669 0.9663

Tribas − 0.0818 0.9341 1.4517 1.2049 0.1722 1.2077 0.1162 0.9117 0.9013

Training function Levenberg-Marquardt (Trainlm)

Transfer function Logsig 0.0268 0.3123 0.2868 0.5355 0.0656 0.5373 0.0517 0.9826 0.9824

Purelin 0.0300 1.4290 3.6037 1.8983 0.2436 1.9070 0.1835 0.7809 0.7253

Radbas − 0.0239 0.3437 0.3385 0.5818 0.0563 0.5840 0.0562 0.9794 0.9787

Softmax − 0.0002 0.4846 0.5762 0.7591 0.0774 0.7626 0.0734 0.9650 0.9632

Tansig 0.0722 0.4067 0.4357 0.6601 0.0560 0.6592 0.0634 0.9735 0.9743

Tribas − 0.0747 0.6581 0.7512 0.8667 0.1088 0.8675 0.0835 0.9543 0.9524

Training function Resilient Backpropagation (Trainrp)

Transfer function Logsig 0.0301 0.5847 0.6424 0.8015 0.0988 0.8047 0.0774 0.9609 0.9602

Purelin − 0.0191 1.4376 3.6057 1.8989 0.2429 1.9076 0.1836 0.7807 0.7199

Radbas − 0.0652 0.4766 0.4937 0.7026 0.0835 0.7028 0.0676 0.9700 0.9697

Softmax − 0.0542 0.5156 0.5816 0.7626 0.0835 0.7642 0.0735 0.9646 0.9645

Tansig 0.0140 0.5599 0.7281 0.8533 0.0929 0.8571 0.0825 0.9557 0.9535

Tribas − 0.0024 0.6597 0.9227 0.9605 0.1125 0.9650 0.0929 0.9439 0.9406

Training function Scaled Conjugate Gradient (Trainscg)

Transfer function Logsig − 0.0011 0.3984 0.3838 0.6195 0.0659 0.6224 0.0599 0.9767 0.9763

Purelin − 0.0075 1.4455 3.6144 1.9012 0.2465 1.9100 0.1838 0.7802 0.7125

Radbas − 0.0331 0.4739 0.4221 0.6497 0.0790 0.6519 0.0627 0.9743 0.9746

Softmax − 0.0078 0.7305 1.1747 1.0838 0.1021 1.0889 0.1048 0.9286 0.9240

Tansig − 0.0387 0.5011 0.6315 0.7947 0.0813 0.7974 0.0767 0.9616 0.9605

Tribas − 0.0518 0.9018 1.4827 1.2177 0.1762 1.2222 0.1176 0.9098 0.8834

Table 17 Validation metrics of all ANN models for predicting formability (one-output structure)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Transfer function Logsig 0.0061 0.4019 0.4625 0.6801 0.0262 0.6832 0.0657 0.8154 0.7719

Purelin 0.0127 0.7181 1.0912 1.0446 0.0466 1.0494 0.1010 0.5645 0.2841

Radbas − 0.0177 0.4577 0.6258 0.7911 0.0295 0.7946 0.0765 0.7502 0.6594

Softmax 0.0179 0.4938 0.7523 0.8673 0.0324 0.8712 0.0838 0.6998 0.5680

Tansig − 0.0065 0.3717 0.4397 0.6631 0.0237 0.6662 0.0641 0.8245 0.7842

Tribas 0.0571 0.7680 1.3460 1.1602 0.0491 1.1642 0.1120 0.4628 0.0145

Training function Bayesian Regularization Backpropagation (Ttrainbr)

Transfer function Logsig − 0.0442 0.4200 0.5709 0.7556 0.0275 0.7578 0.0729 0.7721 0.6926

Purelin − 0.5426 0.9339 1.4040 1.1849 0.0576 1.0583 0.1018 0.4397 − 0.2457

Radbas − 0.0163 0.3948 0.5521 0.7430 0.0260 0.7463 0.0718 0.7796 0.7133

Softmax − 0.0009 0.4160 0.5938 0.7706 0.0275 0.7742 0.0745 0.7630 0.6865

Tansig − 0.0251 0.4152 0.5362 0.7323 0.0272 0.7352 0.0707 0.7860 0.7162

Tribas − 0.0679 0.4810 0.6836 0.8268 0.0313 0.8278 0.0797 0.7272 0.5467
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Table 17 (continued)

Training function BFGS Quasi-Newton (Trainbfg)

Validation metrics ME MAE MSE RMSE MRE SD SEM R2 adj-R2

Training function Conjugate Gradient Backpropagation (Traincgb)

Transfer function Logsig 0.0097 0.3663 0.3775 0.6144 0.0236 0.6172 0.0594 0.8493 0.8225

Purelin 0.0158 0.4002 0.4883 0.6988 0.0263 0.7018 0.0675 0.8051 0.7623

Radbas 0.0086 0.3714 0.4574 0.6763 0.0245 0.6794 0.0654 0.8175 0.7714

Softmax 0.0070 0.3360 0.4046 0.6361 0.0221 0.6390 0.0615 0.8385 0.8031

Tansig − 0.0343 0.3764 0.4385 0.6622 0.0248 0.6644 0.0639 0.8250 0.7952

Tribas 0.0463 0.5499 0.9323 0.9656 0.0361 0.9690 0.0932 0.6279 0.3695

Training function Levenberg-Marquardt (Trainlm)

Transfer function Logsig − 0.0098 0.2403 0.2964 0.5444 0.0158 0.5469 0.0526 0.8817 0.8643

Purelin − 0.0117 0.7175 1.0906 1.0443 0.0463 1.0491 0.1010 0.5647 0.2437

Radbas 0.0226 0.3239 0.2794 0.5286 0.0207 0.5306 0.0511 0.8885 0.8755

Softmax 0.1025 0.3555 0.5028 0.7091 0.0238 0.7049 0.0678 0.7993 0.7648

Tansig − 0.0222 0.3906 0.3783 0.6151 0.0251 0.6175 0.0594 0.8490 0.8327

Tribas 0.0298 0.5271 0.5559 0.7456 0.0336 0.7485 0.0720 0.7781 0.7211

Training function Resilient Backpropagation (Trainrp)

Transfer function Logsig 0.0109 0.3830 0.4395 0.6630 0.0250 0.6660 0.0641 0.8246 0.7984

Purelin − 0.0378 0.7241 1.0935 1.0457 0.0467 1.0499 0.1010 0.5636 0.1406

Radbas 0.0222 0.3813 0.5156 0.7180 0.0252 0.7210 0.0694 0.7942 0.7479

Softmax 0.0034 0.3283 0.4083 0.6390 0.0218 0.6419 0.0618 0.8371 0.8102

Tansig − 0.0067 0.3705 0.4349 0.6595 0.0239 0.6625 0.0637 0.8264 0.8000

Tribas − 0.0449 0.4787 0.6451 0.8032 0.0308 0.8057 0.0775 0.7425 0.6750

Training function Scaled Conjugate Gradient (Trainscg)

Transfer function Logsig − 0.0133 0.3308 0.4186 0.6470 0.0219 0.6499 0.0625 0.8329 0.8000

Purelin 0.0202 0.7214 1.0894 1.0437 0.0468 1.0484 0.1009 0.5652 0.2057

Radbas 0.0149 0.4168 0.6074 0.7794 0.0273 0.7829 0.0753 0.7576 0.7027

Softmax − 0.0217 0.4534 0.5749 0.7583 0.0299 0.7615 0.0733 0.7705 0.7066

Tansig 0.0114 0.4041 0.5108 0.7147 0.0265 0.7179 0.0691 0.7961 0.7425

Tribas − 0.0062 0.5507 0.7301 0.8545 0.0355 0.8584 0.0826 0.7086 0.5809

Table 18 Weights and biases of the best ANN model for predicting accuracy (Trainscg with Radbas)—one-output structure

b1 b2 IW LW

− 5.1413 3.9206 − 1.1773 − 0.7032 − 1.7944 − 1.8483 1.2188 2.0108 − 0.6296 1.9369 0.7717 0.3779 6.4552

1.2616 − 1.7346 − 1.1106 0.1240 0.7292 0.0289 − 0.3600 0.6209 − 2.3675 − 0.6774 − 1.6394 − 2.1276

0.6642 − 0.4661 1.3360 − 0.1381 − 1.3452 − 2.0399 − 0.3382 − 1.2443 3.8528 0.3032 1.1052 2.7984

2.7010 − 0.0229 0.2218 − 1.2916 2.9920 − 4.6045 3.0664 1.2266 − 2.3559 2.6646 4.1350 7.8625

1.5268 1.9534 − 2.5503 1.0572 2.3674 − 1.2938 2.2008 − 0.7986 − 2.0592 0.8307 0.2103 4.7908

− 2.5527 − 2.3043 − 1.3088 − 1.9797 2.4409 0.0598 0.7101 − 0.6936 0.8617 − 1.1759 0.2284 4.3514

0.9677 0.0759 1.0141 1.6768 − 0.7190 1.8965 − 1.7534 − 0.7307 2.1473 − 1.5098 0.2528 − 6.4366

0.9160 − 0.2273 − 0.7655 − 0.1006 − 0.3139 1.1390 2.3990 − 0.9744 − 1.6789 − 0.5358 − 2.2392 − 4.2600

2.3191 0.3222 − 0.2106 − 0.1155 1.1132 2.3911 − 0.5010 − 1.7080 0.0188 0.4250 − 0.6822 2.3087

− 4.4413 0.1749 − 0.6833 − 0.8397 1.7357 − 1.2086 − 0.6854 − 0.8242 1.5373 − 1.4357 0.2100 4.7381
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