5,181 research outputs found

    Content Based Status Updates

    Get PDF
    Consider a stream of status updates generated by a source, where each update is of one of two types: high priority or ordinary (low priority). These updates are to be transmitted through a network to a monitor. However, the transmission policy of each packet depends on the type of stream it belongs to. For the low priority stream, we analyze and compare the performances of two transmission schemes: (i) Ordinary updates are served in a First-Come-First-Served (FCFS) fashion, whereas, in (ii), the ordinary updates are transmitted according to an M/G/1/1 with preemption policy. In both schemes, high priority updates are transmitted according to an M/G/1/1 with preemption policy and receive preferential treatment. An arriving priority update discards and replaces any currently-in-service high priority update, and preempts (with eventual resume for scheme (i)) any ordinary update. We model the arrival processes of the two kinds of updates, in both schemes, as independent Poisson processes. For scheme (i), we find the arrival and service rates under which the system is stable and give closed-form expressions for average peak age and a lower bound on the average age of the ordinary stream. For scheme (ii), we derive closed-form expressions for the average age and average peak age of the high priority and low priority streams. We finally show that, if the service time is exponentially distributed, the M/M/1/1 with preemption policy leads to an average age of the low priority stream higher than the one achieved using the FCFS scheme. Therefore, the M/M//1/1 with preemption policy, when applied on the low priority stream of updates and in the presence of a higher priority scheme, is not anymore the optimal transmission policy from an age point of view

    Status Updates in a multi-stream M/G/1/1 preemptive queue

    Full text link
    We consider a source that collects a multiplicity of streams of updates and sends them through a network to a monitor. However, only a single update can be in the system at a time. Therefore, the transmitter always preempts the packet being served when a new update is generated. We consider Poisson arrivals for each stream and a common general service time, and refer to this system as the multi-stream M/G/1/1 queue with preemption. Using the detour flow graph method, we compute a closed form expression for the average age and the average peak age of each stream. Moreover, we deduce that although all streams are treated equally from a transmission point of view (they all preempt each other), one can still prioritize a stream from an age point of view by simply increasing its generation rate. However, this will increase the sum of the ages which is minimized when all streams have the same update rate

    Timely Updates over an Erasure Channel

    Get PDF
    Using an age of information (AoI) metric, we examine the transmission of coded updates through a binary erasure channel to a monitor/receiver. We start by deriving the average status update age of an infinite incremental redundancy (IIR) system in which the transmission of a k-symbol update continuesuntil k symbols are received. This system is then compared to a fixed redundancy (FR) system in which each update is transmitted as an n symbol packet and the packet is successfully received if and only if at least k symbols are received. If fewer than k symbols are received, the update is discarded. Unlike the IIR system, the FR system requires no feedback from the receiver. For a single monitor system, we show that tuning the redundancy to the symbol erasure rate enables the FR system to perform as well as the IIR system. As the number of monitors is increased, the FR system outperforms the IIR system that guarantees delivery of all updates to all monitors

    Investigating the use of fiber-reinforced polymer bars in concrete

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 35-37).Fiber Reinforced Polymer bars were introduced to the market over two decades ago. However, their use is still somewhat limited. FRP bars are very corrosion resistant and with much of the US infrastructure degrading, the use of FRP bars over conventional steel has been proposed as a fix to this remedy. This thesis looks into the difference between the properties of FRP and steel such as: Elastic modulus, strength, time dependent behaviors, temperature effects and so on. The thesis terminates with an investigation of life cycle cost analysis performed by several authors looking through the positive and negative aspects. The Life Cycle Cost analysis concentrates on the use of FRP bars in a bridge decks. The findings suggest that FRP reinforcement is highly recommended in corrosive environments and with time will gradually be the favored material for reinforcing bridge decks as the technology slowly proves itself.by Mounir Najm.M.Eng
    corecore