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Abstract—Using an age of information (AoI) metric, we exam-
ine the transmission of coded updates through a binary erasure
channel to a monitor/receiver. We start by deriving the average
status update age of an infinite incremental redundancy (IIR)
system in which the transmission of a k-symbol update continues
until k symbols are received. This system is then compared
to a fixed redundancy (FR) system in which each update is
transmitted as an n symbol packet and the packet is successfully
received if and only if at least k symbols are received. If fewer
than k symbols are received, the update is discarded. Unlike
the IIR system, the FR system requires no feedback from the
receiver. For a single monitor system, we show that tuning the
redundancy to the symbol erasure rate enables the FR system to
perform as well as the IIR system. As the number of monitors
is increased, the FR system outperforms the IIR system that
guarantees delivery of all updates to all monitors.

I. INTRODUCTION

Status update systems have focused on sending updates to a
monitor through a system or network in which the transmission
of an update requires a random service time [1]–[6]. In this
work, we consider a system in which a source sends coded
updates through an unreliable channel to a monitor. We examine
how to employ coding redundancy in order to minimize an
“Age of Information” (AoI) metric. We will see that this is not
the same as ensuring reliable delivery of every update while
minimizing the coding overhead. Over a noisy channel, the age
is reduced only when an update is correctly received, but using
coding to increase the probability of correct reception incurs
additional delay for each update. In this work, we examine
what is just the right amount of redundancy.

In our system model, the source sends updates through a
symbol erasure channel to a monitor. One symbol is transmitted
per unit time. A symbol is erased with probability δ; otherwise
it is received correctly. Each update is a timestamped file with
k information symbols. Depending on the coding strategy, these
updates are encoded into at least k and possibly infinitely many
(rateless) coded symbols for transmission over the channel. The
monitor may employ a feedback channel to notify the source
about symbols that have been erased or packets that have failed
to be decoded.

If at time t, the most recent received update is timestamped
u(t), the status age is ∆(t) = t− u(t). In the absence of an
update, the status age increases linearly with time. Thus the
age process ∆(t) is a sawtooth waveform as shown in Figure 1.
To compare coding strategies, our system performance metric
is the time-average status age (also known as the AoI)

∆ = lim
T→∞

1

T

∫ T

0

∆(t) dt. (1)

We will use two coding techniques: 1) an infinite incremental
redundancy (IIR) strategy and 2) a finite redundancy (FR)
strategy. Under the IIR strategy, each k-symbol update is
encoded by a rateless code such that when k coded symbols
are correctly received by the monitor, the update is successfully
decoded (e.g., a Reed-Solomon or a Fountain code). The source
is provided instantaneous feedback when the update has been
decoded, at which point it starts transmitting a new update.

Under the FR strategy, each k-symbol update is encoded
as an n-symbol packet. The update is successfully delivered
as soon as k un-erased symbols are received. If fewer than
k symbols are received, the update is discarded. This system
employs no feedback from the monitor and thus all n symbols
of an update are transmitted even if the monitor successfully
decodes the update before the transmission is finished. The
source starts transmitting a new update once the n symbols
of the previous update have been sent. Note that under the
FR strategy 1) not every update will be decoded and 2) there
generally will be a positive time gap between the completion
of decoding of an update and the beginning of the new update
transmission.

In this work, Section II analyzes AoI for the IIR system,
first with a single monitor and then with m > 1 monitors. In
Section III, we characterize age in the FR updating system.
For this system, we show that by matching the redundancy
n to the erasure rate, the FR system has AoI approaching
that of the single-monitor IIR system as k becomes large. In
Section IV, we present numerical evaluations of both systems.
A brief discussion concludes this work in Section V. The page
limit precluded the inclusion of the Appendix. A version with
this appendix is available [7].

II. AOI UNDER THE IIR STRATEGY

A. Single Monitor System

Update 1 begins transmission at time t = 0 and is
timestamped T0 = 0. To analyze the average age, we define
Xi as the number of symbols sent until the kth un-erased
symbol of update i is received. Because the erasure channel
is memoryless, X1, X2, . . . are iid negative binomial (NB)
(k, 1− δ) random variables, identical to X(k) with PMF

PX(k)(x) =

(
x− 1

k − 1

)
(1− δ)kδx−k, x = k, k + 1, . . . (2)

For convenience, we will denote the CDF of X(k) by

Fk(n) =

n∑
x=k

(
x− 1

k − 1

)
(1− δ)kδx−k, n = k, k + 1, . . . (3)
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Fig. 1. Sample path of the status update age ∆IIR(t) (the upper envelope
in bold) for the IIR updating system. Updates are delivered at time instances
marked by •. Update i submitted at time Ti−1 is delivered after a transmission
time Xi.

We also note that X(k) has expected value E[X(k)] = µk and
variance Var[X(k)] = σ2

k with

µk =
k

1− δ
, σ2

k =
kδ

(1− δ)2
. (4)

Following the delivery of update l at time Tl =
∑l
i=1Xl,

update l + 1 immediately begins transmission.
To analyze the average age ∆, we decompose the area

defined by the integral (1) into a sum of disjoint polygonal
areas A1, A2, . . . as shown in Figure 1. Over the time interval
(0, T = Tl), this decomposition yields average age

∆IIR = lim
l→∞

1

Tl

l∑
i=1

Ai = lim
l→∞

1
l

∑l
i=1Ai

1
l

∑l
i=1Xi

=
E[A]

E[X]
. (5)

When update i begins transmission at time Ti−1, the age is
∆(Ti−1) = Xi−1. From Figure 1, we see that the area Ai is

Ai = Xi−1Xi +X2
i /2. (6)

Since the Xi are iid, E[A] = (E[X])2+E
[
X2
]
/2 and it follows

from (4) and (5) that the average age of the IIR system is

∆IIR = E[X] +
E
[
X2
]

2 E[X]
=

k

1− δ

(
3

2
+
δ

k

)
. (7)

We note IIR is the only strategy that guarantees the delivery
of every update. Moreover, it minimizes the coding overhead,
and thus maximizes the throughput. It takes k/(1− δ) coded
symbols on average to transmit a k-symbol update, which is not
equal to the average update age. In particular, 3k/[2(1− δ)] is
what the average age would be if each update were delivered by
exactly k/(1−δ) symbol transmissions. The additional (though
admittedly small) age penalty of IIR reflects the randomness
in the negative binomial distribution.

We also observe that IIR is a zero-wait system: as soon as an
update is delivered, a new update goes into service. However,
when service times are random, zero-wait policies may not
be age-minimizing. By [6, Theorem 5], it can be shown that
zero-wait is optimal for IIR if and only if δ ≤ k/(2k + 1).

B. Multiple Monitor System

Using IIR to transmit to m > 1 monitors, the source
continues to transmit encoded symbols until each of the m

∆
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Fig. 2. Sample path of the status update age ∆
(m)
IIR (t) for user j in the IIR

updating system with m > 1 monitors. Update i completes transmission at
time Ti. Update delivery instances for monitor j are marked by •.

monitors has correctly received k coded symbols. The source
is provided instantaneous feedback when an update has been
decoded by all users.

Update 1 begins transmission at time t = 0 and is
timestamped T0 = 0. To analyze the average age, we define
Xij as the number of symbols sent until the kth un-erased
symbol of update i is received by monitor j. Because the
erasure channels of all users are memoryless and independent,
the Xij are iid NB (k, 1−δ) random variables with PMF given
by (2).

The transmission time of update i is

Yi = max(Xi1, . . . , Xim). (8)

The Yi are an iid sequence, each with CDF

FY (y) = P[Y ≤ y] = P[X(k) ≤ y]
m

= [Fk(y)]m. (9)

Following the delivery of update l at time Tl =
∑l
i=1 Yi,

update l + 1 immediately begins transmission.

Since all monitors have statistically identical (but indepen-
dent) channels, we define ∆(t) as the age of some monitor j
and we now analyze the average age ∆. Figure 2 depicts the
age process ∆(t) for monitor j. The analysis of the average
age is similar to that for the single user IIR system. As before,
update i completes transmission at time Ti, but, for user j, the
age ∆(t) drops when update i is delivered to monitor j at the
earlier time Ti−1 + Xij . We note this implies that update i
completes transmission at time Ti, the age at monitor j is then
∆(Ti) = Yi.

As we did for the single user system, we represent the area of
the integral (1) as the concatenation of the polygons A1, . . . , Al,
yielding the average age ∆

(m)
IIR = E[A]/E[Y ]. Examination of

Figure 2 will show that

Ai = Yi−1Xij +X2
ij/2 +Xij(Yi −Xij) + (Yi −Xij)

2/2

= Yi−1Xij + Y 2
i /2. (10)

Since Xij is independent of the transmission time Yi−1 of the
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Fig. 3. A sample path of the FR age ∆FR(t): successful update
deliveries (at times marked by •) occur in slots 1, 3, i, and i + 3.
Updates are discarded in slots 2, i + 1, and i + 2.

previous update, E[A] = E[Y ] E[X] + E
[
Y 2
]
/2 and

∆
(m)
IIR = E[X] +

E
[
Y 2
]

2 E[Y ]
. (11)

Using (3) and (9), the moments E[Y ] and E
[
Y 2
]

are easy to
calculate but they do not have simple closed form expressions.

III. AOI UNDER FIXED REDUNDANCY CODING

Under the fixed redundancy (FR) strategy, each update is
encoded as an n-symbol packet but the update is successfully
decoded as soon as k un-erased symbols are received. If fewer
than k symbols are received, the update is discarded. This
system employs no feedback from the monitor and thus all
n symbols of an update are transmitted even if the monitor
decodes the update before the transmission is finished.

To analyze this system, we define Ti = in and slot i as the
time interval (Ti−1, Ti]. Update i is successfully delivered in
slot i with probability

1− εn = P
[
X(k) ≤ n

]
= Fk(n). (12)

Referring to Figure 3, when a success occurs in slot i, the age
at time Ti−1 +Xi is reset to Xi because update i has age Xi

at that time instant. Moreover, ∆(Ti) = n because update i
will then have age n at the end of slot i. Consequently, when
a success occurs in slot i, Ti is a renewal point of the process
∆(t) in that ∆(Ti) = n and time instant Ti marks the start
of transmission of a fresh update. In the example of Figure 3,
renewals occur at times T1, T3, Ti, and Ti+3.

Measured in slots, the length of a renewal period is a
geometric (1− εn) random variable Mn with PMF

PMn(m) = εm−1n (1− εn), m = 1, 2, . . . , (13)

corresponding to m− 1 updates being discarded followed by
a success with update m.

For the FR system, we analyze the AoI ∆ in (1) using
renewal-reward theory [8]. Specifically, we interpret ∆(t) as
an instantaneous reward rate so that ∆ is the average reward

rate. In the renewal period starting at time Ti, the reward

R =

∫ Ti+Mn

Ti

∆(t) dt (14)

is earned. In Figure 3, R is the shaded area. This renewal
period terminates after Mn = m slots because Xi+m ≤ n.
This implies Xi+Mn

is identical to a random variable X̃n with
PMF PX̃n

(x) = PX(k)|X(k)≤n(x). From (2) and (3),

PX̃n
(x) =

(
x−1
k−1
)
(1− δ)kδx−k

Fk(n)
, x ≤ n. (15)

It will be convenient to define µ̃n ≡ E[X̃n] and we note
that (15) implies

µ̃n =
1

Fk(n)

n∑
x=k

x

(
x− 1

k − 1

)
(1− δ)kδx−k

=
k

Fk(n)

n∑
x=k

(
x

k

)
(1− δ)kδx−k. (16)

With the substitutions x′ = x+ 1 and k′ = k + 1, we obtain

µ̃n =
k

(1− δ)Fk(n)

n+1∑
x′=k′

(
x′ − 1

k′ − 1

)
(1− δ)k

′
δx
′−k′

=
kFk+1(n+ 1)

(1− δ)Fk(n)
. (17)

Note that X̃n is independent of the number of slots Mn

in a given renewal period. Referring to Figure 3, the renewal
period consists of an interval of length

Yn = n(Mn − 1) + X̃n = nMn − (n− X̃n). (18)

in which ∆(t) grows from ∆(Tj) = n to ∆(Tj+Y ) = n+Yn,
followed by a second interval of length n − X̃n. As shown
in the figure, each of these intervals contributes a rectangular
area and a triangular area to the reward R. Thus,

R = nYn + Y 2
n /2 + X̃n(n− X̃n) + (n− X̃n)2/2

= nYn + Y 2
n /2 + n2/2− X̃2

n/2. (19)

It then follows from (18) that

R = n2M2
n/2 + nMnX̃n. (20)

Since the renewal period has length Mnn, the renewal-reward
theorem ensures that the time-average reward (corresponding
to the time-average age ∆) is

∆FR(n) =
E[R]

E[Mnn]
=
nE
[
M2
n

]
2 E[Mn]

+ µ̃n. (21)

Since Mn has moments

E[Mn] =
1

1− εn
, E

[
M2
n

]
=

1 + εn
(1− εn)2

, (22)

it follows that

∆FR(n) =
n

1− εn
− n

2
+ µ̃n. (23)

We note that calculation of ∆FR(n) is straightforward using



(12) and (17).

A. AoI Bounds under FR

We will see from numerical evaluations in Section IV that
given k, δ there exists an optimal redundancy n∗k such that

∆∗FR = ∆FR(n∗k) ≤ ∆FR(n) (24)

for all n. To characterize n∗k, we now derive ∆FR(n), a
surprisingly tight upper bound on the average age ∆FR(n).
We then show that a close approximation to n∗k can be found
by a minimization of ∆FR(n) based on a central limit theorem
(CLT) approximation. While this method is approximate, the
result will yield a strict (and tight) upper bound to ∆∗FR. We
start with the following claim, with proof in the Appendix.

Lemma 1: For fixed k and δ, the sequence µ̃k, µ̃k+1, . . . is
nondecreasing and satisfies

µ̃n ≤ min(n, k/(1− δ)).

Applying Lemma 1 to (23), we obtain the upper bound

∆FR(n) ≤ ∆FR(n) ≡ n

1− εn
− n

2
+

k

1− δ
. (25)

Writing n = σkz + µk, we employ the CLT approximation

1− εn = P
[
X(k) ≤ n

]
= P

[
X(k) ≤ σkz + µk

]
≈ Φ(z) (26)

where Φ(z) is the standard Gaussian CDF. Applied to (25),
this approximation permits us to write

∆FR(n) ≈ σkz + µk
Φ(z)

− σkz + µk
2

+ µk

= σk

(
z + µ̂k
Φ(z)

− z

2
+
µ̂k
2

)
(27)

where µ̂k ≡ µk/σk =
√
k/δ. Because µ̂k � z for typical

parameters, we make the further approximation

∆FR(n) ≈ σk
(

µ̂k
Φ(z)

− z

2
+
µ̂k
2

)
. (28)

Setting the derivative of the right side of (28) to zero, we
obtain −µ̂kΦ′(z) = [Φ(z)]2/2. For large k, we will want
the probability an update is decoded to be fairly close to 1.
Hence Φ(z) ≈ 1 for values of z of interest. Since Φ′(z) =
e−z

2/2/
√

2π, solving Φ′(z) = −1/[2µ̂k] yields z = z∗k =√
ln(2k/πδ). Employing (4), we obtain the threshold

n̂∗k = µk + σkz
∗
k =

k

1− δ
(1 + ωk) (29)

where

ωk ≡
[
δ

k
ln

2k

πδ

]1/2
. (30)

In the Appendix, we verify the following claim:
Lemma 2: Given η0 > 0, there exists K0 such that

P
[
X(k) > n̂∗k

]
≤ βk ≡ eη0/(1−δ)

√
πδ

2k
, k ≥ K0.
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Fig. 4. The average age ∆FR(n) for update packets with k = 1000
information symbols as a function of the number of transmitted symbols
n. For each curve, × marks ∆FR(n̂∗k). For δ = 0.4 and δ = 0.1, the dashed
lines show the IIR age ∆IIR.

We note that the tail probability [P
[
X(k) > n̂∗k

]
decays slowly

(i.e. sub-exponentially) because n̂∗k is approaching µk as k
becomes large. It follows from (24), (25) and Lemma 2 that

∆∗FR ≤ ∆FR(n̂∗k) =
n̂∗k

P
[
X(k) ≤ n̂∗k

] − n̂∗k
2

+
k

1− δ

=
k

1− δ

[
3

2
+
βk + 1

2ωk(1 + βk)

1− βk

]
. (31)

Since βk and ωk approach zero as k grows, we see from (7) and
(31) that the average age of the IIR system and the average age
of FR system with optimized redundancy both asymptotically
approach 1.5k/(1− δ).

IV. EVALUATION

Figure 4 evaluates a system in which updates have k = 1000
information symbols. We plot the FR age ∆FR(n) in (23) as
a function of n, the FR update packet length, for a range of
values of the erasure probability δ. As one would expect, the
age increases as δ increases. We also see that for a given
erasure probability δ, the optimal n is sharply defined. Too few
transmitted symbols and the age blows up because the packet
update erasure probability is high; on the other hand, more than
the minimum number of sent symbols also creates unnecessary
age. Marked by × are the approximately optimal redundancy
n̂∗k and the corresponding age upper bound ∆FR(n̂∗k).

Figure 5 is similar to Figure 4 except there are only k = 50
information bits and the figure includes the upper bound ∆FR(n)
in (25). Furthermore, the figure is plotted as the normalized age
∆/[k/(1− δ)] vs. the normalized packet length n/[k/(1− δ)].
This normalization and the small value of k are chosen to
accentuate the gap between ∆FR(n) and ∆FR(n). For typical
values of k such as k = 1000, the gap between the age and
the upper bound cannot be visually resolved.

Figure 6 compares systems with m > 1 monitors. For each
value of δ, we compare the IIR age ∆

(m)
IIR and the FR age

∆FR(n̂∗k) using n̂∗k symbols matched to the erasure rate δ. The
IIR system completes the transmission of an update only after
all m monitors have decoded. Consequently, the IIR average
age grows monotonically with m. Because the FR system
ignores whether a monitor has actually decoded an update,



Normalized Packet Length

1 1.1 1.2 1.3 1.4

N
o
rm

al
iz

ed
 A

g
e

1.5

1.6

1.7

1.8

1.9

2

2.1

δ=0.4

δ=0.2

δ=0.1

Fig. 5. The average age ∆FR(n) and the upper bound ∆FR(n) for update
packets with k = 50 information symbols as a function of the number of
transmitted symbols n. The age and packet length are normalized by k/(1−δ).
For each curve, × marks ∆FR(n̂∗k).

the FR age is insensitive to the number of users. To highlight
small differences, all ages are normalized by k/(1− δ). We
see that for all values of the erasure probability δ, the FR
system outperforms the IIR when the number of monitors m
becomes sufficiently large. We also see that normalized system
performance is very similar across a range of erasure rates.

V. DISCUSSION

We have shown that the FR system, which requires no
feedback, can essentially match the performance of the IIR
system that does require update delivery feedback from the
monitor. However, the FR system does require the redundancy
to be carefully optimized in response to the channel erasure
rate. In practical systems, the erasure rate will vary with time
and cannot be assumed to be known. Hence, the FR system will
also require some form of feedback to establish the appropriate
redundancy level. In practice, systems issues, such as whether
receiver feedback can be supported, will determine which
approach is better in a particular setting.

In addition, other coded redundancy mechanisms merit
examination. For example, the finite incremental redundancy
(FIR) strategy [9], just like FR, uses a fixed rate code, but the
source is provided instantaneous feedback if the update has
been decoded before all its n symbols have been transmitted,
at which point it starts transmitting a new update, as in IIR. On
the other hand, FIR shares the advantage of FR that updates
that were unlucky in transmission can be terminated without
waiting for successful decoding.

It is natural to compare timely update delivery with HARQ-
aided content download. Hybrid ARQ (HARQ) is a special
transmission scheme that combines the conventional ARQ
with error correction (see e.g. [10]). Incremental redundancy
HARQ (IR-HARQ) schemes adapt their error correcting code
redundancy to varying channel conditions, and thus achieve
better throughput efficiency than ordinary ARQ. In content
download, all content needs to be delivered, and thus these
systems have to have a rateless transmission at some level
(e.g., conventional ARQ or Fountain codes at the packet level)
which will continue until each packet is successfully delivered.
For example, in eMBMS, an FR strategy on the physical
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Fig. 6. The average age ∆
(m)
IIR (solid line) and the upper bound ∆FR(n̂∗k)

(dashed line) for update packets with k = 1000 information symbols as a
function of the number of monitors m. Note that ages are normalized by
k/(1− δ).

layer would have a Fountain code at the packet level [11].
Furthermore, content download systems strive to minimize
the download time, which, as we have seen in Sec II, is not
equivalent to minimizing AoI. The behavior of both systems in
a multi-user scenario is similar because of an underlying order
statistics phenomenon. Roughly speaking, when there are many
users, it is very likely that it will take a long time for some
to decode, and putting limits on that time as the FR strategy
does, will have an advantage. Content download systems will
then have to supplement such systems with an outer rateless
code. It would be interesting to compare update delivery with
content streaming where all packets have to be delivered in a
timely manner.

REFERENCES

[1] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. INFOCOM, 2012.

[2] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Trans. Info
Theory, vol. 62, no. 4, pp. 1897–1910, April 2016.

[3] C. Kam, S. Kompella, G. D. Nguyen, and A. Ephremides, “Effect of
message transmission path diversity on status age,” IEEE Trans. Info
Theory, vol. 62, no. 3, pp. 1360–1374, March 2016.

[4] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int’l. Symp. Info. Theory, 2015.

[5] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in IEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer
Communications, April 2016, pp. 1–9.

[6] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” CoRR, vol.
abs/1601.02284, 2016, submitted to IEEE Trans. Info. Theory. [Online].
Available: http://arxiv.org/abs/1601.02284

[7] R. D. Yates, E. Najm, E. Soljanin, and Zhong Jing, “Timely Updates
over an Erasure Channel,” Tech. Rep., 2017. [Online]. Available:
http://infoscience.epfl.ch/record/224673

[8] R. G. Gallager, Stochastic processes: theory for applications. Cambridge
University Press, 2013.

[9] M. Heindlmaier and E. Soljanin, “Isn’t hybrid ARQ sufficient?” in
Communication, Control, and Computing (Allerton), 52nd Annual
Allerton Conference on. IEEE, 2014, pp. 563–568.

[10] E. Soljanin, R. Liu, and P. Spasojevic, “Hybrid ARQ with random
thansmission assignments,” in Advances in Network Information Theory,
Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA,
March 17-19, 2003, 2003, pp. 321–334.

[11] A. Shokrollahi, M. Luby et al., “Raptor codes,” Foundations and Trends R©
in Communications and Information Theory, vol. 6, no. 3–4, pp. 213–322,
2011.



APPENDIX

Proof: (Lemma 1) With the shorthand definitions

qn ≡
Fk(n)

(1− δ)k
, q̂n ≡

Fk+1(n+ 1)

(1− δ)k+1
, (32)

we observe that (17) permits us to write

µ̃n = kq̂n/qn. (33)

It follows from (3) and (32) that qk = q̂k = 1 and that

qk+1 = 1 + kδ, q̂k+1 = 1 + (k + 1)δ. (34)

These facts imply µ̃k = k and

µ̃k+1 =
kq̂k+1

qk+1
= k +

kδ

1 + kδ
. (35)

Thus µ̃k ≤ µ̃k+1 and µ̃k+1 ≤ k+1. We now prove by induction
that the sequence µ̃n is nondecreasing and satisfies µ̃n ≤ n.
Suppose µ̃k ≤ µ̃k+1 ≤ · · · ≤ µ̃n−1 and that µ̃i ≤ i for i < n.
Defining γn ≡

(
n−1
k−1
)
δn−k, it follows from (3) that

qn = qn−1 + γn, (36)

q̂n = q̂n−1 +

(
n

k

)
δn−k = q̂n−1 +

n

k
γn. (37)

This implies

µ̃n =
kq̂n
qn

=
kq̂n−1 + nγn
qn−1 + γn

. (38)

By our induction hypothesis, µ̃n−1 ≤ n, or, equivalently,
kq̂n−1 ≤ nqn−1. Applying this upper bound to the numerator
in (38) yields µ̃n ≤ n. We now observe that (38) and
n ≥ µ̃n−1 = kq̂n−1/qn−1 also imply

µ̃n ≥
kq̂n−1 + (kq̂n−1/qn−1)γn

qn−1 + γn
=
kq̂n−1
qn−1

= µ̃n−1. (39)

Finally, we observe from (12) that

lim
n→∞

qn =
1

(1− δ)k
, lim

n→∞
q̂n =

1

(1− δ)k+1
. (40)

This implies limn→∞ µ̃n = k/(1−δ). Since µ̃n is nondecreas-
ing, µ̃n ≤ k/(1− δ) for all n ≥ k.

Proof: (Lemma 2) Random variable X(k) has moment
generating function φX(k)(s) = [(1− δ)es/(1− δes)]k. By the
Chernoff bound, ln P

[
X(k) ≥ n̂∗k

]
≤ mins≥0 P

(k)(s) where

P (k)(s) = ln[e−sn̂
∗
φX(k)(s)] (41)

= k

[
ln(1− δ)− s

(
δ + ωk
1− δ

)
− ln(1− δes)

]
. (42)

It is straightforward to show that Pk(s) is minimized at

s∗ = ln[(1 + ωk/δ)/(1 + ωk)]. (43)

Using the shorthand notation L(x) = ln(1 + x), it follows
from (43) that

P (k)(s∗) =
−k[(δ + ωk)L(ωk/δ)− (1 + ωk)L(ωk)]

1− δ
. (44)

Defining

y1(k) ≡ k[δL(ωk/δ)− L(ωk)], (45)
y2(k) ≡ kωk[L(ωk/δ)− L(ωk)], (46)

we observe that

P (k)(s∗) = −y1(k) + y2(k)

1− δ
. (47)

With the definition

`k ≡ ln

(
2k

πδ

)
= ln k + ln

(
2

πδ

)
, (48)

we observe from (30) that ω2
k = δ`k/k. This implies y1(k) =

`kR1(k) and y2(k) = `kR2(k) where

R1(k) =
δ[δL(ωk/δ)− L(ωk)]

ω2
k

, (49)

R2(k) =
δ[L(ωk/δ)− L(ωk)]

ωk
. (50)

Since ωk → 0 as k →∞, l’Hôpital’s rule yields

lim
k→∞

R1(k) = lim
z→0

δ[δL(z/δ)− L(z)]

z2
= −1− δ

2
, (51)

lim
k→∞

R2(k) = lim
z→∞

δ[L(z/δ)− L(z)]

z
= 1− δ. (52)

It follows from (54) that

P (k)(s∗) = − `k
1− δ

[R1(k) +R2(k)]. (53)

Moreover, (51) and (52) imply that for any η0 > 0, there exists
K0 such that

P (k)(s∗) = − `k
1− δ

(
1− δ

2
− η0

)
, k ≥ K0. (54)

The claim then follows.


