1,856 research outputs found

    Phase transition in Pr0.5Ca0.5CoO3 and related cobaltites

    Full text link
    We present an extensive investigation (magnetic, electric and thermal measurements and X-ray absorption spectroscopy) of the Pr0.5Ca0.5CoO3 and (Pr1-yYy)0.7Ca0.3CoO3 (y=0.0625-0.15) perovskites, in which a peculiar metal-insulator (M-I) transition, accompanied with pronounced structural and magnetic anomalies, occurs at 76 K and 40-132 K, respectively. The inspection of the M-I transition using the XANES data of Pr L3-edge and Co K-edge proofs the presence of Pr4+ ions at low temperatures and indicates simultaneously the intermediate spin to low spin crossover of Co species on lowering the temperature. The study thus definitively confirms the synchronicity of the electron transfer between Pr3+ ions and Co^(3+/4+)O3 subsystem and the transition to the low-spin, less electrically conducting phase. The large extent of the transfer is evidenced by the good quantitative agreement of the determined amount of the Pr4+ species, obtained either from the temperature dependence of the XANES spectra or via integration of the magnetic entropy change over the Pr4+ related Schottky peak in the low-temperature specific heat. These results show that the average valence of Pr3+/Pr4+ ions increases (in concomitance with the decrease of the formal Co valence) below TMI for (Pr0.925Y0.075)0.7Ca0.3CoO3 up to 3.16+ (the doping level of the CoO3 subsystem decreases from 3.30+ to 3.20+), for (Pr0.85Y0.15)0.7Ca0.3CoO3 up to 3.28+ (the decrease of doping level from 3.30+ to 3.13+) and for Pr0.5Ca0.5CoO3 up to 3.46+ (the decrease of doping level from 3.50+ to 3.27+).Comment: 19 pages, 11 figure

    Generic phase diagram of "electron-doped" T' cuprates

    Full text link
    We investigated the generic phase diagram of the electron doped superconductor, Nd2-xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap "impurities" on superconductivity and also magnetism in T' cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2-xCexCuO4.Comment: 12 pages, 4 figures; International Symposium on Superconductivity (ISS) 200

    Far-infrared and submillimeter-wave conductivity in electron-doped cuprate La_{2-x}Ce_xCuO_4

    Full text link
    We performed far-infrared and submillimeter-wave conductivity experiments in the electron-doped cuprate La_{2-x}Ce_xCuO_4 with x = 0.081 (underdoped regime, T_c = 25 K). The onset of the absorption in the superconducting state is gradual in frequency and is inconsistent with the isotropic s-wave gap. Instead, a narrow quasiparticle peak is observed at zero frequency and a second peak at finite frequencies, clear fingerprints of the conductivity in a d-wave superconductor. A far-infrared conductivity peak can be attributed to 4Delta_0, or to 2Delta_0 + Delta_spin, where Delta_spin is the resonance frequency of the spin-fluctuations. The infrared conductivity as well as the suppression of the quasiparticle scattering rate below T_c are qualitatively similar to the results in the hole-doped cuprates.Comment: 5 pages, 4 figures include

    Instability and Periodic Deformation in Bilayer Membranes Induced by Freezing

    Full text link
    The instability and periodic deformation of bilayer membranes during freezing processes are studied as a function of the difference of the shape energy between the high and the low temperature membrane states. It is shown that there exists a threshold stability condition, bellow which a planar configuration will be deformed. Among the deformed shapes, the periodic curved square textures are shown being one kind of the solutions of the associated shape equation. In consistency with recent expe rimental observations, the optimal ratio of period and amplitude for such a texture is found to be approximately equal to (2)^{1/2}\pi.Comment: 8 pages in Latex form, 1 Postscript figure. To be appear in Mod. Phys. Lett. B. 199

    No evidence yet for hadronic TeV gamma-ray emission from SNR RX J1713.7-3946

    Full text link
    Recent TeV-scale gamma-ray observations with the CANGAROO II telescope have led to the claim that the multi-band spectrum of RX J1713.7-3946 cannot be explained as the composite of a synchrotron and an inverse Compton component emitted by a population of relativistic electrons. It was argued that the spectrum of the high-energy emission is a good match to that predicted by pion decay, thus providing observational evidence that protons are accelerated in SNR to at least TeV energies. In this Letter we discuss the multi-band spectrum of RX J1713.7-3946 under the constraint that the GeV-scale emission observed from the closely associated EGRET source 3EG J1714-3857 is either associated with the SNR or an upper limit to the gamma-ray emission of the SNR. We find that the pion-decay model adopted by Enomoto et al. is in conflict with the existing GeV data. We have examined the possibility of a modified proton spectrum to explain the data, and find that we cannot do so within any existing theoretical framework of shock acceleration models.Comment: in press as Letter to Astronomy & Astrophysic

    Cosmic Ray Acceleration at Relativistic Shock Waves with a "Realistic" Magnetic Field Structure

    Full text link
    The process of cosmic ray first-order Fermi acceleration at relativistic shock waves is studied with the method of Monte Carlo simulations. The simulations are based on numerical integration of particle equations of motion in a turbulent magnetic field near the shock. In comparison to earlier studies, a few "realistic" features of the magnetic field structure are included. The upstream field consists of a mean field component inclined at some angle to the shock normal with finite-amplitude sinusoidal perturbations imposed upon it. The perturbations are assumed to be static in the local plasma rest frame. Their flat or Kolmogorov spectra are constructed with randomly drawn wave vectors from a wide range (kmin,kmax)(k_{min}, k_{max}). The downstream field structure is derived from the upstream one as compressed at the shock. We present particle spectra and angular distributions obtained at mildly relativistic sub- and superluminal shocks and also parallel shocks. We show that particle spectra diverge from a simple power-law, the exact shape of the spectrum depends on both the amplitude of the magnetic field perturbations and the wave power spectrum. Features such as spectrum hardening before the cut-off at oblique subluminal shocks and formation of power-law tails at superluminal ones are presented and discussed. At parallel shocks, the presence of finite-amplitude magnetic field perturbations leads to the formation of locally oblique field configurations at the shock and the respective magnetic field compressions. This results in the modification of the particle acceleration process, introducing some features present in oblique shocks, e.g., particle reflections from the shock. We demonstrate for parallel shocks a (nonmonotonic) variation of the particle spectral index with the turbulence amplitude.Comment: revised version (37 pages, 13 figures

    Anomalous Low Temperature Behavior of Superconducting Nd(1.85)Ce(0.15)CuO(4-y)

    Full text link
    We have measured the temperature dependence of the in-plane London penetration depth lambda(T) and the maximum Josephson current Ic(T) using bicrystal grain boundary Josephson junctions of the electron-doped cuprate superconductor Nd(1.85)Ce(0.15)CuO(4-y). Both quantities reveal an anomalous temperature dependence below about 4 K. In contrast to the usual monotonous decrease (increase) of lambda(T) (Ic(T)) with decreasing temperature, lambda(T) and Ic(T) are found to increase and decrease, respectively, with decreasing temperature below 4 K resulting in a non-monotonous overall temperature dependence. This anomalous behavior was found to be absent in analogous measurements performed on Pr(1.85)Ce(0.15)CuO(4-y). From this we conclude that the anomalous behavior of Nd(1.85)Ce(0.15)CuO(4-y) is caused by the presence of the Nd3+ paramagnetic moments. Correcting the measured lambda(T) dependence of Nd(1.85)Ce(0.15)CuO(4-y) for the temperature dependent susceptibility due to the Nd moments, an exponential dependence is obtained indicating isotropic s-wave pairing. This result is fully consistent with the lambda(T) dependence measured for Pr(1.85)Ce(0.15)CuO(4-y).Comment: 4 pages including 4 figures, to appear in Phys. Rev. Let

    Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion

    Full text link
    To study the shape formation process of carbon nanotubes, a string equation describing the possible existing shapes of the axis-curve of multishell carbon tubes (MCTs) is obtained in the continuum limit by minimizing the shape energy, that is the difference between the MCT energy and the energy of the carbonaceous mesophase (CM). It is shown that there exists a threshold relation of the outmost and inmost radii, that gives a parameter regime in which a straight MCT will be bent or twisted. Among the deformed shapes, the regular coiled MCTs are shown being one of the solutions of the string equation. In particular,the optimal ratio of pitch pp and radius r0r_0 for such a coil is found to be equal to 2π2\pi , which is in good agreement with recent observation of coil formation in MCTs by Zhang et al.Comment: RevTeX, no figure, 12 pages, to appear in Phys. Rev. Let
    corecore