We present an extensive investigation (magnetic, electric and thermal
measurements and X-ray absorption spectroscopy) of the Pr0.5Ca0.5CoO3 and
(Pr1-yYy)0.7Ca0.3CoO3 (y=0.0625-0.15) perovskites, in which a peculiar
metal-insulator (M-I) transition, accompanied with pronounced structural and
magnetic anomalies, occurs at 76 K and 40-132 K, respectively. The inspection
of the M-I transition using the XANES data of Pr L3-edge and Co K-edge proofs
the presence of Pr4+ ions at low temperatures and indicates simultaneously the
intermediate spin to low spin crossover of Co species on lowering the
temperature. The study thus definitively confirms the synchronicity of the
electron transfer between Pr3+ ions and Co^(3+/4+)O3 subsystem and the
transition to the low-spin, less electrically conducting phase. The large
extent of the transfer is evidenced by the good quantitative agreement of the
determined amount of the Pr4+ species, obtained either from the temperature
dependence of the XANES spectra or via integration of the magnetic entropy
change over the Pr4+ related Schottky peak in the low-temperature specific
heat. These results show that the average valence of Pr3+/Pr4+ ions increases
(in concomitance with the decrease of the formal Co valence) below TMI for
(Pr0.925Y0.075)0.7Ca0.3CoO3 up to 3.16+ (the doping level of the CoO3 subsystem
decreases from 3.30+ to 3.20+), for (Pr0.85Y0.15)0.7Ca0.3CoO3 up to 3.28+ (the
decrease of doping level from 3.30+ to 3.13+) and for Pr0.5Ca0.5CoO3 up to
3.46+ (the decrease of doping level from 3.50+ to 3.27+).Comment: 19 pages, 11 figure