48 research outputs found

    Solar Forcing Recorded by Aerosol Concentrations in Coastal Antarctic Glacier Ice, McMurdo Dry Valleys

    Get PDF
    Ice-core chemistry data from Victoria Lower Glacier, Antarctica, suggest, at least for the last 50 years, a direct influence of solar activity variations on the McMurdo Dry Valleys (MDV) climate system via controls on air-mass input from two competing environments: the East Antarctic ice sheet and the Ross Sea. During periods of increased solar activity, when total solar irradiance is relatively high, the MDV climate system appears to be dominated by air masses originating from the Ross Sea, leading to higher aerosol deposition. During reduced solar activity, the Antarctic interior seems to be the dominant air-mass source, leading to lower aerosol concentration in the ice-core record. We propose that the sensitivity of the MDV to variations in solar irradiance is caused by strong albedo differences between the ice-free MDV and the ice sheet

    Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans

    Get PDF
    An International Ocean Discovery Program (IODP) workshop was held at Sydney University, Australia, from 13 to 16 June 2017 and was attended by 97 scientists from 12 countries. The aim of the workshop was to investigate future drilling opportunities in the eastern Indian Ocean, southwestern Pacific Ocean, and the Indian and Pacific sectors of the Southern Ocean. The overlying regional sedimentary strata are underexplored relative to their Northern Hemisphere counterparts, and thus the role of the Southern Hemisphere in past global environmental change is poorly constrained. A total of 23 proposal ideas were discussed, with ~12 of these deemed mature enough for active proposal development or awaiting scheduled site survey cruises. Of the remaining 11 proposals, key regions were identified where fundamental hypotheses are testable by drilling, but either site surveys are required or hypotheses need further development. Refinements are anticipated based upon regional IODP drilling in 2017/2018, analysis of recently collected site survey data, and the development of site survey proposals. We hope and expect that this workshop will lead to a new phase of scientific ocean drilling in the Australasian region in the early 2020s.The organizers gratefully acknowledge generous and critically important funding for participants’ travel to the workshop. Funding came from the Australian and New Zealand IODP Consortium (ANZIC), the US Science Support Program (USSSP), the Magellan-Plus Workshop Program of the European Consortium for Ocean Research Drilling (ECORD), the Japan Drilling Earth Consortium (J-DESC), the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), IODP-India, and the home institutions of numerous scientists

    Antarctic Climate Change and the Environment: A Decadal Synopsis and Recommendations for Action

    Get PDF
    Scientific evidence is abundantly clear and convincing that due to the current trajectory of human-derived emissions of CO2 and other greenhouse gases, the atmosphere and ocean will continue to warm, the ocean will continue to acidify, atmospheric and ocean circulation patterns will be altered, the cryosphere will continue to lose ice in all forms, and sea level will rise

    Reassessing the post-Last Glacial Maximum retreat history from the Southwest Ross Sea

    Get PDF
    Constraining the timing of the retreat of the Last Glacial Maximum (LGM) Antarctic Ice Sheet in the Ross Sea provides insights into the processes controlling marine-based ice sheet retreat. The over-deepened Ross Sea continental shelf is an ideal configuration for marine ice-sheet instability, and this region was thought to be one of the largest Antarctic contributors to post-LGM sea level rise. However, the chronology and pattern of retreat of the LGM ice sheet in the Ross Sea is largely constrained by coastal records along the Transantarctic Mountain front in the Western Ross Sea. Although these offer more reliable dating techniques than marine sediment cores, they may be influenced by local glaciers derived from East Antarctic outlet glaciers. Consequently, these coastal records may be ambiguous in the broader context of retreat in the central regions of the Ross Sea. However, previous studies have inferred that records in this region retreated in a north to south pattern, and was fed by ice sourced from the central Ross Sea – with the implication that broader ice sheet retreat in the central Ross Sea occurred as late as the mid Holocene. We present two lines of evidence that counter this established interpretation of the pattern of retreat in the Ross Sea: 1) a sedimentary facies succession and foraminifera-based radiocarbon chronology from within the Ross Sea embayment that indicates glacial retreat and open marine conditions to the east of Ross Island was already in place before 8.6 cal ka BP, at least 1 kyr earlier than indicated by terrestrial records in McMurdo Sound; and 2) a new multibeam swath bathymetry data that identifies well-preserved glacial features indicating thick (>700m) marine-based ice derived from the East Antarctic Ice Sheet (EAIS) coastal outlet glaciers dominated the ice sheet input into the southwestern Ross Sea during the last phases of glaciation – and thus may have acted independent of any ice in the central Ross Sea embayment. Comparing these data to new modelling experiments, we hypothesize that marine-based ice sheet retreat was triggered by oceanic forcings along most of the Pacific Ocean coastline of Antarctica, but continued early Holocene retreat into the inner shelf region of the Ross Sea occurred primarily as a consequence of marine ice sheet instability. Keywords: Ross Sea, deglaciation, Last Glacial Maximum, Holocen

    Facies investigations on sediment core CRP-3 from the Ross Sea, Antarctica

    No full text
    The Cenozoic Victoria Land Basin (VLB) stratigraphic section penetrated by CRP-3 is mostly of Early Oligocene age. It contains an array of lithofacies comprising fine-grained mudrocks, interlaminated and interbedded mudrocks/sandstones, mud-rich and mud-poor sandstones, conglomerates and diamctites that are together interpreted as the products of shallow marine to possibly non-marine environments of deposition, affected by the periodic advance and retreat of tidewater glaciers. This lithofacies assemblage can be readily rationalised using the facies scheme designed originally for CRP-2/2A, and published previously. The uppermost 330 metres below sea floor (mbsf) shows a cyclical arrangement of lithofacies also similar to that recognised throughout CRP-2/2A, and interpreted to reflect cyclical variations in relative sea-level driven by ice volume fluctuations ('Motif A'). Between 330 and 480 mbsf, a series of less clearly cyclical units, generally fining-upward but nonetheless incorporating a significant subset of the facies assemblage, has been identified and noted in the Initial Report as 'Motif B' Below 480 mbsf, the section is arranged into a repetitive succession of fining-upward units, each of which comprises dolerite clast conglomerate at the base passing upward into relatively thick intervals of sandstones. The cycles present down 480 mbsf are defined as sequences, each interpreted to record cyclical variation of relative sea-level. The thickness distribution of sequences in CRP-3 provides some insights into the geological variables controlling sediment accumulation in the Early Oligocene section. The uppermost part of the section in CRP-3 comprises two or three thick, complete sequences that show a broadly symmetrical arrangement of lithofacies (similar to Sequences 9-11 in CRP-2/2A). This suggests a period of relatively rapid tectonic subsidence, which allowed preservation of the complete facies cycle. Below Sequence 3, however, is a considerable interval of thin, incomplete and erosionally truncated sequences (4-23), which incorporates both the remainder of Motif A sequences and all Motif B sequences recognised. The thinner and more truncated sequences suggest sediment accumulation under conditions of reduced accommodation, and given the lack of evidence for glacial conditions (see Powell et al., this volume) tends to argue for a period of reduced tectonic subsidence. The section below 480 mbsf consists of a series of fining-upward, conglomerate to sandstone intervals which cannot be readily interpreted in terms of relative sea-level change. A relatively mudrock-rich interval above the basal conglomerate/breccia (782-762 mbsf) may record initial flooding of the basin during early rift subsidence. The lithostratigraphy summarised above has been linked to seismic reflection data using depth conversion techniques (Henrys et al., this volume). The three uppermost reflectors ('o', 'p' and 'q') correlate to the package of thick sequences 1-3, and several deeper reflectors can also be correlated to sequence boundaries. The package of thick Sequences 1-3 shows a sheet-like cross-sectional geometry on seismic reflection lines, unlike the similar package recognised in CRP-2/2A

    (Table 1) Lithofacies interpretation and distribution in sediment core CRP-3

    No full text
    Seven hundred and nineteen samples from throughout the Cainozoic section in CRP-3 were analysed by a Malvern Mastersizes laser particle analyser, in order to derive a stratigraphic distribution of grain-size parameters downhole. Entropy analysis of these data (using the method of Woolfe & Michibayashi, 1995) allowed recognition of four groups of samples, each group characterised by a distinctive grain-size distribution. Group 1, which shows a multi-modal distribution, corresponds to mudrocks, interbedded mudrock/sandstone facies, muddy sandstones and diamictites. Group 2, with a sand-grade mode but showing wide dispersion of particle size, corresponds to muddy sandstones, a few cleaner sandstones and some conglomerates. Group 3 and Group 4 are also sand-dominated, with better grain-size sorting, and correspond to clean, well-washed sandstones of varying mean grain-size (medium and fine modes, respectively). The downhole disappearance of Group 1, and dominance of Groups 3 and 4 reflect a concomitant change from mudrock- and diamictite-rich lithology to a section dominated by clean, well-washed sandstones with minor conglomerates. Progressive downhole increases in percentage sand and principal mode also reflect these changes. Significant shifts in grain-size parameters and entropy group membership were noted across sequence boundaries and seismic reflectors, as recognised in other studies

    Sequence stratigraphy of the Nukumaruan Stratotype (Pliocene-Pleistocene, c. 2.08-1.63 Ma), Wanganui Basin, New Zealand

    No full text
    Late Pliocene to Early Pleistocene (c. 2.08 - 1.63 Ma) strata exposed in coastal cliffs along Nukumaru and Ototoka beaches near Wanganui, between the top of the Nukumaru Limestone and the base of the Butlers Shell Conglomerate, comprise 11 depositional sequences of a total thickness of c. 86 m. The sequences consist predominantly of silicilclastic shoreline facies. Non-marine facies (including palaeosols), and a variety of shallow-marine shellbed facies, are also represented. Patterns in facies composition and sequence architecture reveal three sequence motifs (Marwell, Nukumaru, and Biragrove) that represent progressively increasing maximum palaeowater depths within a broadly basin-margin palaeogeographic setting. The sequence motif changes systematically up section and records a lower order tectonic influence on accommodation that has modulated the stacking patterns of individual sequences. Correlation of the sequences with oxygen isotope stages 77-57 is achieved using the basin-wide Ototoka tephra, and indicates that the sequences accumulated in response to obliquity driven (41 k.y. duration) glacio-eustatic sea-level oscillations. Correlation of the Nukumaru coast sequences with other sections along basin strike, and the global oxygen isotope record indicates that (i) 500 k.y. (δ11O stages MIS 56-34) is missing at the unconformity between the Nukumaruan and overlying Castlecliffian stratotypes on the Wanganui coast, and (ii) the Pliocene-Pleistocene boundary lies within sequence NC7 at the base of the Lower Maxwell Formation
    corecore