59 research outputs found

    Energy-based metrics for arthroscopic skills assessment

    Get PDF
    Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency

    Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis

    Get PDF
    Importance Delay discounting is a behavioral economic index of impulsive preferences for smaller-immediate or larger-delayed rewards that is argued to be a transdiagnostic process across health conditions. Studies suggest some psychiatric disorders are associated with differences in discounting compared with controls, but null findings have also been reported. Objective To conduct a meta-analysis of the published literature on delay discounting in people with psychiatric disorders. Data Sources PubMed, MEDLINE, PsycInfo, Embase, and Web of Science databases were searched through December 10, 2018. The psychiatric keywords used were based on DSM-IV or DSM-5 diagnostic categories. Collected data were analyzed from December 10, 2018, through June 1, 2019. Study Selection Following a preregistered Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, 2 independent raters reviewed titles, abstracts, and full-text articles. English-language articles comparing monetary delay discounting between participants with psychiatric disorders and controls were included. Data Extraction and Synthesis Hedges g effect sizes were computed and random-effects models were used for all analyses. Heterogeneity statistics, one-study-removed analyses, and publication bias indices were also examined. Main Outcomes and Measures Categorical comparisons of delay discounting between a psychiatric group and a control group. Results The sample included 57 effect sizes from 43 studies across 8 diagnostic categories. Significantly steeper discounting for individuals with a psychiatric disorder compared with controls was observed for major depressive disorder (Hedges g = 0.37; P = .002; k = 7), schizophrenia (Hedges g = 0.46; P = .004; k = 12), borderline personality disorder (Hedges g = 0.60; P < .001; k = 8), bipolar disorder (Hedges g = 0.68; P < .001; k = 4), bulimia nervosa (Hedges g = 0.41; P = .001; k = 4), and binge-eating disorder (Hedges g = 0.34; P = .001; k = 7). In contrast, anorexia nervosa exhibited statistically significantly shallower discounting (Hedges g = –0.30; P < .001; k = 10). Modest evidence of publication bias was indicated by a statistically significant Egger test for schizophrenia and at the aggregate level across studies. Conclusions and Relevance Results of this study appear to provide empirical support for delay discounting as a transdiagnostic process across most of the psychiatric disorders examined; the literature search also revealed limited studies in some disorders, notably posttraumatic stress disorder, which is a priority area for research

    On the Origin and Trigger of the Notothenioid Adaptive Radiation

    Get PDF
    Adaptive radiation is usually triggered by ecological opportunity, arising through (i) the colonization of a new habitat by its progenitor; (ii) the extinction of competitors; or (iii) the emergence of an evolutionary key innovation in the ancestral lineage. Support for the key innovation hypothesis is scarce, however, even in textbook examples of adaptive radiation. Antifreeze glycoproteins (AFGPs) have been proposed as putative key innovation for the adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica. A crucial prerequisite for this assumption is the concurrence of the notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we use a fossil-calibrated multi-marker phylogeny of nothothenioid and related acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All time-constraints are cross-validated to assess their reliability resulting in six powerful calibration points. We find that the notothenioid radiation began near the Oligocene-Miocene transition, which coincides with the increasing presence of Antarctic sea ice. Divergence dates of notothenioids are thus consistent with the key innovation hypothesis of AFGP. Early notothenioid divergences are furthermore congruent with vicariant speciation and the breakup of Gondwana

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    A Software Architecture for Adaptive Modular Sensing Systems

    Get PDF
    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration

    Multimodal noncontact tracking of surgical instruments

    No full text
    This paper describes the development and validation of the Inertial and Range-Enhanced Surgical (IRES) tracker - a novel, noncontact laparoscopic tracking system that may be used as an inexpensive alternative to optical and electromagnetic (EM) tracking systems for tracking surgical instruments. The system is based on the fusion of inertial, magnetic and distance sensing to generate real-time, 6-DOF pose data. Orientation is estimated using a Kalman-filtered attitude-heading reference system (AHRS) and restricted motion at the trocar provides a datum from which position information can be recovered. The IRES tracker was validated within a surgical training box. The results show that the IRES tracker achieves similar performance to an EM tracker with position error as low as 1.25 mm RMS and orientation error \u3c0.58°RMS along each axis. It also displayed greater precision and superior magnetic interference rejection capabilities. At a fraction of the cost of current laparoscopic tracking methods, the IRES tracking system is a suitable alternative for use in surgical training and skills assessment

    Articulating minimally invasive ultrasonic tool for robotics-assisted surgery

    No full text
    In this paper, a robotics-assisted articulating ultrasonic surgical scalpel for minimally invasive soft tissue cutting and coagulation is designed and developed. For this purpose, the optimal design of a Langevin transducer with stepped horn profile is presented for internal-body applications. The modeling, optimization and design of the ultrasonic scalpel are performed through equivalent circuit theory and verified by finite element analysis. Moreover, a novel two degrees-of-freedom (DOFs) surgical end effector (1-DOF pitch, 1-DOF grip) with decoupled motions is developed that is compatible with the da Vinci® surgical system. The developed instrument is then driven using the dVRK (da Vinci® research kit) and the Classic da Vinci® surgical system
    corecore