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Abstract: Minimally invasive skills assessment methods are essential in developing efficient surgical
simulators and implementing consistent skills evaluation. Although numerous methods have been
investigated in the literature, there is still a need to further improve the accuracy of surgical skills
assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study
are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate
classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical
energy and work were considered and their values were divided by the related value of an ideal
performance to develop normalized metrics. These metrics were used as inputs for various machine
learning algorithms including support vector machines (SVM) and neural networks (NNs) for
classification. The accuracy of the combination of the normalized energy-based metrics with these
classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method
was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic
tasks. The results showed that there are statistically significant differences between novices and
experts for almost all of the normalized energy-based metrics. The accuracy of classification using
SVM and NN methods was between 70% and 95% for the various tasks. The results show that the
normalized energy-based metrics and their combination with SVM and NN classifiers are capable
of providing accurate classification of trainees. The assessment method proposed in this study can
enhance surgical training by providing appropriate feedback to trainees about their level of expertise
and can be used in the evaluation of proficiency.

Keywords: energy-based metrics; surgical skills assessment; arthroscopy; machine learning algorithms;
sensorized instruments

1. Introduction

1.1. Skills Assessment in Minimally Invasive Surgery

Surgical simulators are now being used for training and assessment purposes in various surgical
fields including arthroscopy. The advantages of using these simulators in training programs consist of
unrestricted practice time, lower cost compared to cadaver models, the opportunity for independent
learning, and decreasing the risk to patients in the operating room [1]. The suitability of these simulators
for training and assessment purposes not only depends on a realistic design and efficient use of the
simulator, but also on the assessment method that is incorporated into the simulator to evaluate
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the proficiency levels of users. Objective assessment methods are essential in evaluating residents
and surgeons before entering the operating room to increase safety of patients. Traditionally, skills
assessment is performed by expert evaluators using global rating scales (GRS) for scoring [2]. The
global rating scale for shoulder arthroscopy (GRSSA) is an example of a GRS developed for shoulder
arthroscopy [3]. However, these methods are subjective and the results among different evaluators
are inconsistent.

A clear definition of proficiency in minimally invasive surgery is not provided in the literature.
Many studies demonstrate that a higher level of expertise is associated with a shorter task completion
time [4,5]. However, quicker performance may result in reduced quality. Motion is another parameter
that has been analyzed for skills assessment. Several metrics such as path length, velocity, and jerk
are defined based on motion information [6,7]. The amount of force applied to the target tissue has
also been considered as a representation of skill proficiency [8–10]. These metrics have shown high
correlation with the level of expertise. However, the currently available metrics do not address all the
needs and the appropriate combination of these metrics should be investigated to enhance surgical
skills assessment.

Minimum energy expenditure has been identified as a feature of general motor skills [11].
Elliot et al. [12,13] demonstrated that practicing a physical task reduces energy expenditure.
Analysis of energy expenditure based on instrument kinetic energy was investigated for skills
assessment in [14] in the form of the integral of the acceleration vector (IAV). In our previous study,
energy expenditure was introduced for laparoscopic skills assessment [15,16]. In the current study,
another metric is added to the previously developed energy-based metrics, the proposed metrics are
normalized, and the resulting metrics are studied for arthroscopic skills.

In order to incorporate performance metrics into surgical simulators, the criteria of expertise
should be defined based on the performance of subjects with various levels of expertise. Knowing these
criteria, the level of expertise of a new trainee can be determined. Machine learning algorithms
are helpful in defining these criteria. As different performance metrics may demonstrate various
distributions over levels of expertise, an appropriate classifying algorithm is needed for each metric or
for each combination of metrics. Several machine learning algorithms have been investigated in the
literature. For example, the support vector machine (SVM) is a classifying algorithm used to explore
motion patterns in [17]. An accuracy of 91% was obtained in this study. Linear discriminant analysis
(LDA) is another classifier used in [18,19]. In [18], LDA was used to evaluate the combination of time,
force, and motion-based metrics and 100% accuracy in classifying subjects into two groups (experts and
novices) was achieved. LDA was also utilized in [20] to investigate eye metrics, which were developed
based on pupillary and eye movements, and provided 91.9% accuracy. The use of neural networks
(NNs) was also explored in this study, resulting in 92.9% accuracy using the same eye metrics. In the
current study, various methods of combining the normalized energy-based metrics using machine
learning algorithms are investigated.

1.2. Objectives

Although energy expenditure was investigated in our previous studies for two laparoscopic
tasks, its applicability in different areas of Minimally Invasive Surgery (MIS) has not been explored
sufficiently. The goal of this study was to introduce and evaluate normalized energy-based metrics for
basic arthroscopic tasks. Evaluating the combination of these metrics with various classifiers was also
among the objectives of this study.

2. Methods

To accomplish the aforementioned objectives, a series of experiments were performed.
In Section 2.1 the experimental protocol for data collection is explained. The normalized energy-based
metrics, the classifiers that were used with these metrics, and the validation procedure are presented
in Sections 2.2, 2.3, and 2.4, respectively.
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(a)

(b) (c)

Figure 1. Shoulder simulator and video tower (a), the sensorized arthroscopic probe (b), and the
sensorized arthroscopic grasper (c).

2.1. Experimental Design

A sensorized physical shoulder simulator was used in this study for investigating three
arthroscopic tasks: two probing tasks and a grasping task. The shoulder simulator was developed at
Canadian Surgical Technologies and Advanced Robotics (CSTAR), and its face and construct validity
were demonstrated in [21]. The simulator and the accompanying video tower are shown in Figure 1a.
The first probing task, Task 1, consisted of pressing a switch at the top and another switch in the middle
of the glenoid (Figure 2a). The second probing task, Task 2, consisted of pressing a switch underneath
the acromion and another switch underneath the coracoid process (Figure 2b). The switches used in the
probing tasks were top-actuated switches with the operating force of 1 N. The successful probing of
each switch was indicated by the illumination of an LED located close to the base of the simulator and
was also indicated in the integrated graphical user interface of the system. The grasping task, Task 3,
involved grasping and removing a loose body made of silicone from the joint capsule (Figure 2c).
For all three tasks, the arthroscopic instruments were held in the left hand and the arthroscope was
held in the right hand. Prior to the start of the procedure, the arthroscope was placed such that
the video provided an appropriate view of the target area. The instrument was placed outside of
the simulator at the opening of the appropriate portal for the task. A sensorized arthroscopic probe
(Figure 1b) and a sensorized arthroscopic grasper (Figure 1c) were used for the probing and grasping
tasks, respectively. These sensorized instruments were capable of measuring bending forces applied at
the tip of the instrument and tracking the position of the tip of the instrument in 6 degrees of freedom
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(DOF). A set of four strain gauges were attached to the shaft of the instruments for force sensing,
connected in a half-bridge II Wheatstone bridge. A 6 DOF position sensor (Aurora mini 6 DOF sensor,
Northern Digital Inc. (NDI), Waterloo, ON, Canada), coupled to an electromagnetic position tracking
system (Aurora v2, Northern Digital Inc. (NDI), Waterloo, ON, Canada), was also embedded in the
shaft of each instrument and the camera [8]. The sampling frequency for both force and position data
was 20 Hz. These data were then low-pass filtered with a 12-Hz cut-off frequency.

(a) (b) (c)

Figure 2. The arthroscopic tasks investigated in this study: (a) Task 1; (b) Task 2; and (c) Task 3.

In this study, 26 participants were divided into two levels of expertise: novice (n = 18) and
expert (n = 8). This grouping was performed based on each subject’s experience in arthroscopic
surgery. The novice group consisted of subjects with no surgical training, orthopaedic residents, and
non-orthopaedic surgeons without scoping experience. The expert group consisted of orthopaedic
fellows and fellowship-trained orthopaedic surgeons. No exclusion criterion was applied for
recruitment of the participants. Human Research Ethics Board approval was obtained prior to the
start of the experiments from Western University Health Science Research Ethics Board (HSREB file
number: 106105, Approval date 3 March 2015).

2.2. Metrics

The use of energy expenditure in the form of mechanical energy, including potential energy
and kinetic energy, and work was proposed in our previous study for laparoscopic suturing and
knot-tying tasks [15]. Work (W) is generated due to a force that causes a displacement. Potential energy
(EP) is due to the position of instruments in a gravitational field and kinetic energy is due to the
velocity of instruments. The energy-based metrics were defined as the total work and the sum of
the changes in potential energy and the sum of the changes in kinetic energy when performing a
task [15]. The kinetic energy was considered due to the translational velocity of the instrument. In the
current study, two forms of kinetic energy are considered: translational kinetic energy (ETK)—due to
translational velocity, and rotational kinetic energy (ERK)—due to rotational velocity. The rotational
kinetic-based metric is calculated according to the following formula:

E RK =
∫ T

0

d(ω2
x + ω2

y + ω2
z)

dt
dt, (1)

where T is task completion time, and ωx, ωy, and ωz are rotational velocities about x, y, and z axes.
If the same instrument is used to perform a task by all of the subjects, the mass of the instrument and
the moment of inertia can be removed from the equations, as they would contribute the same scaling
factors to the metrics of all of the subjects. In this study, the same instruments were used and the
energy-based metrics did not include the mass and moment of inertia of the instruments.
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Interpreting the values of the defined metrics is not possible without knowing the amount of
energy expenditure corresponding to the ideal performance. In this study, an expert arthroscopist was
asked to perform the tasks of this study with the same conditions as all other subjects. This expert
arthroscopist had performed well over 2500 arthroscopic interventions and was also an expert with
the simulator, due to her contributions to the design of the simulator and the experiment. This trial
was recorded without previous practice on the same day in order to be consistent with all of the other
subjects. The energy-based metrics that were calculated based on her performance were considered as
the ideal metric values. Each energy-based metric was divided by the corresponding ideal value and the
resulting metrics are referred to as normalized energy-based metrics (WN, EP-N, ETK-N, ERK-N). In other
words, the normalized metrics indicate the performance of a subject relative to the ideal performance.

As the arthroscope was not sensorized with force sensors, the work-based metric was not calculated
for the arthroscope. Consequently, four metrics were calculated for the instrument ((WN, EP-N, ETK-N,
ERK-N) and three metrics were calculated for the arthroscope (EP-N, ETK-N, ERK-N).

2.3. Trainee Classification

In order to determine the level of expertise of trainees, a classifier should be trained with data
from subjects at various levels of expertise. The classifiers should be able to accurately determine the
level of expertise of subjects based on their performance metrics. The metrics used in this study were
the normalized energy-based metrics as inputs to four classifiers: SVM, K-nearest neighbors (KNN),
neural networks (NNs), and LDA. All of the energy-based metrics have been included in the analysis
without any exclusions.

In the SVM classifier, the input data is mapped onto another feature space by a kernel function.
Then the optimum hyperplane that separates the data in the mapped feature space is determined [22].
The fitcsvm function of MATLAB (Matrix Laboratory) with a linear kernel function was used to
establish the SVM classifier.

KNN performs the classification based on K points that lie nearest to the test data point. The test
point is assigned to the class with the highest posterior probability of class membership. This is
computed as Ki/K, where Ki is the number of points of Class i that lie nearest to the test point. As K
increases the borders of each class become smoother, and as it decreases fine variations in each class
can be determined. The choice of a large K reduces sensitivity to noise [22]; however, due to the small
sample size of the current study, the choice of a large K was not possible. Considering a maximum of 6
valid trials for experts (as described in Section 3), K was assigned a value of 3 in this study.

NNs were also investigated through the neural network toolbox of MATLAB. As suggested
in the literature, the maximum number of hidden layer nodes should be N/d, where N is the
length of the training data and d is the number of input nodes [23]. For all three tasks of this study,
the network structure consisted of 3 input nodes when the energy-based metrics of the arthroscope
were considered, 4 input nodes when the energy-based metrics of the instrument were considered,
and 7 input nodes when the energy-based metrics of both of the instrument and the arthroscope
were considered. In addition, one hidden layer with 3 nodes and 1 output node were specified in
the network structure. This structure reduces computational cost and the possibility of overfitting.
The training data were divided into two subsets: 70% for network training and 30% for training
validation. The optimization of the weights and bias was performed by the Levenberg–Marquardt
backpropagation algorithm. The target matrix was set to 1 for novices and 2 for experts. The output of
the NN model was then rounded to assign the test data point to its corresponding group. In the LDA
algorithm, the multi-dimensional feature matrix is projected into one dimension by multiplying the
feature matrix by a weight vector. This weight vector is determined in a manner that maximizes the
separation of class means and minimizes interclass variance [22]. The fitcdiscr function of MATLAB
was used to implement the LDA classifier.
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2.4. Validation

2.4.1. Leave-One-Subject-Out Cross-Validation

Validation of the proposed metrics and the combination of these metrics with the above-mentioned
classifiers was performed through a leave-one-subject-out (LOSO) cross-validation technique. In this
technique, the data is partitioned into two sets: a test set, consisting of one subject, and a training set,
consisting of all subjects except the test subject. The validation procedure is repeated with different
test subjects until all the subjects have been in the test group once [17,18,22,24]. The level of expertise
of the test subject is determined in the validation procedure, assuming that his/her level of expertise
is unknown. The determined level of expertise is then compared to the level of expertise of subjects
based on their experience in arthroscopic surgery.

The performance of these classifiers in combination with the normalized energy-based metrics
was quantified through four measures: accuracy—ratio of the total number of correct identifications
to the total number of subjects, precision—ratio of the number of experts classified as expert to the
number of subjects classified as expert, recall—ratio of the number of expert subjects classified as
experts to the total number of experts, and F1 score, which is defined as:

F1 = 2 × precision × recall
precision + recall

. (2)

Mistakenly classifying experts as novices indicates that they require more practice, however, wrongly
classifying novices as experts can result in safety issues for patients. Consequently, it is very important to
investigate the ability of the assessment method to correctly classify experts, which can be evaluated by
precision and recall measures. The F1 score is the harmonic mean of precision and recall, which is the
appropriate method of calculating the average of parameters that are represented as percentages. In other
words, the F1 score demonstrates the balance between precision and recall [25,26].

The performance of the energy-based metrics is also compared to the combination of task
completion time, path length, and maximum bending force. This combination is evaluated using the
LOSO cross validation for all of the classifiers that are investigated in this study.

2.4.2. Computation Time

In order to compare the computation times of the classifiers, the running time for training the
classifiers and testing of all the subjects in the cross-validation was measured. The stopwatch timer
of MATLAB was employed for the three tasks of this study and the mean and standard deviation
values were calculated. Statistical analysis was also performed to investigate the difference between
the classifiers in terms of the running time. All computations were implemented on a PC running
Windows 7 with a 3.40 GHz Intel(R) Core(TM) i7-3770 CPU and 8 GB RAM.

3. Results

The recorded data were explored to remove any erroneous data from the analysis. The data sets that
contained significant interruptions in the recording were excluded from the study. These interruptions
could happen due to limited range of position tracking, sensitivity of the position tracking system to
ferromagnetic metal, or a disconnection in the force sensing circuit. Therefore, the number of subjects for
which valid data were recorded varied in different tasks. Similarly, for analysis of both hands together,
the subjects whose data from either the instrument or the arthroscope was not valid were excluded.
Table 1 shows the number of subjects with valid data from the instrument, the arthroscope, and both
the instrument and arthroscope.
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Table 1. Number of subjects with valid data from the instrument, the arthroscope, and both the
instrument and the arthroscope for the three studied tasks.

Task Instrument Arthroscope Instrument and Athroscope

Novices Experts Total Novices Experts Total Novices Experts Total

1 16 4 20 15 5 20 14 4 18
2 18 5 23 17 6 23 15 5 20
3 16 4 20 12 4 16 12 4 16

(a) (b)

(c) (d)

Figure 3. The arthroscope’s tip displacement (a,b), and angle (c,d) for a random novice and expert
subject over the same time duration.

The experimental design of this study required holding the arthroscope in an appropriate position
at the beginning of the task. In Task 1, both switches were clearly visible in front of the camera at
the beginning. However, subjects were allowed to move the arthroscope as required, e.g., to zoom in
on the switch or find the instrument tip. In Task 2, the switch underneath the acromion was clearly
visible at the beginning, but to have an appropriate view of the switch underneath the coracoid process,
subjects needed to navigate around the coracoid. In Task 3, the arthroscope was located in a position
that showed the loose body, but it could be re-positioned by the subject as needed. Although the
main part of the task was supposed to be completed by manipulating the instrument, the use of the
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arthroscope was affected by the expertise of the subjects as well. Figure 3 provides a comparison of the
changes in the displacement and angle of the arthroscope in 6 DOF between a random novice and a
random expert during a 15-s time frame. In this figure, the same vertical limits are applied for both
the novice and expert subjects to provide a clear comparison, i.e., 10 cm for displacement and 20◦ for
angle. More fluctuations and changes in position and angle of the arthroscope can be seen for the
novice subject compared to the expert one. These fluctuations result in a higher energy expenditure by
the novice subjects.

3.1. Energy-Based Metrics and Normalized Energy-Based Metrics

The valid data were used to calculate energy-based metrics for the left hand (holding the proper
instrument for the task) and the right hand (holding the arthroscope). As can be seen in Figure 4,
the amount of energy expenditure for the experts was considerably lower than that for the novices.
As seen in this figure, Task 2 required higher levels of energy than Tasks 1 and 3. This is due to the
position of the switches, which required more effort, even by experts. Tasks 1 and 3 required similar
ranges of energy in terms of potential energy, translational kinetic energy, and work. However, the
required amount of rotational energy for Task 3 was considerably less than the corresponding value
for Task 1. The Probing tasks required manipulation of the probe in certain angles to successfully
press the switches, which was not required in Task 3. Regarding the outliers in Figure 4, the videos of
subjects who were recognized as outliers were inspected to find any external reason that might affect
their performance. As these outlier points were not related to a reasonable cause, they were included
in the analysis.

The normality of the results for each metric was analyzed using the Shapiro–Wilk test through
the Statistical Package for the Social Sciences, Version 24 (SPSS, Chicago, IL, USA). The normality
test was rejected for some of the energy-based metrics in different tasks. The metrics with a normal
distribution were analyzed using the Independent-Sample t test and the metrics with non-normal
distribution were analyzed using the Mann–Whitney U test of SPSS. The statistical analysis showed a
significant difference between the two levels of expertise for all the normalized energy-based metrics
except rotational kinetic energy of the instrument for Task 2. These metrics were then normalized
with respect to the corresponding values of the ideal performance of each task as was explained in
Section 2.2. The mean and standard deviation of the resulting metrics, the normalized energy-based
metrics, are shown in Table 2. Statistical analysis was also performed on these metrics using the
Independent-Sample t test or the Mann–Whitney U test depending on whether the data presented
a normal or non-normal distribution. The metrics with a normal distribution are marked by an
asterisk in the p value columns of Table 2. For most of the normalized energy-based metrics, the mean
values of the expert group were close to 1 and there was a significant difference between the expert
and the novice groups. The small variance among the expert group demonstrates the similarity of
the performance of the expert subjects to the ideal performance. The only metric that had a mean
value considerably higher than 1 was the rotational kinetic energy for Task 1. This can be due to the
unfamiliarity of the subjects with the appropriate angle of holding the instrument when pressing the
switches. This metric decreases significantly in Task 2.
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(a)

(b)

(c)

Figure 4. Energy-based metrics for the instrument (left) and arthroscope (right). (a) Task 1, (b) Task 2, and (c) Task 3. In this figure, ** indicates a statistically significant
difference with p value less than 0.01 and * indicates a statistically significant difference with p value less than 0.05.
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Table 2. The mean and standard deviation of the normalized energy-based metrics for the novice and
expert groups and the corresponding p values. The statistically significant p values are shown in bold.
EP-N, ETK-N, ERK-N, and WN stand for the normalized potential energy, normalized translational kinetic
energy, normalized rotational kinetic energy, and normalized work, respectively. All of the metrics,
except ERK-N of the instrument and the arthroscope for Task 2, which are indicated with an asterisk
(*), demonstrated statistically significant differences between novices and experts. The metrics with a
normal distribution are marked with † in the p value column.

Task 1 Task 2 Task 3

Metric Level Mean ± SD p value Mean ± SD p value Mean ± SD p value

In
st

ru
m

en
t

EP-N
Novice 5.87 ± 4.47 0.001 5.15 ± 3.26 <0.001 5.22 ± 5.55 0.002Expert 0.88 ± 0.44 1.18 ± 0.60 1.10 ± 0.17

ETK-N
Novice 6.24 ± 4.65

<0.001 † 5.92 ± 4.12 0.001 6.92 ± 6.98 0.022Expert 1.07 ± 0.51 1.37 ± 0.74 1.84 ± 1.29

ERK-N
Novice 145.35 ± 127.06

0.014 † 8.05 ± 10.15 0.199 * 5.10 ± 3.33
0.003 †

Expert 50.56 ± 29.24 2.41 ± 2.65 1.95 ± 0.78

WN
Novice 29.43 ± 22.71

<0.001 † 9.92 ± 10.16 0.007 7.64 ± 7.89 0.001Expert 3.49 ± 1.32 2.68 ± 2.52 0.53 ± 0.21

A
rt

hr
os

co
pe

EP-N
Novice 11.89 ± 9.35

0.001 † 7.07 ± 6.10 0.024 8.34 ± 8.02 0.001Expert 1.59 ± 0.79 2.34 ± 1.93 2.23 ± 1.56

ETK-N
Novice 10.72 ± 8.74 0.011 6.44 ± 5.47 0.002 8.38 ± 8.56 0.001Expert 1.40 ± 0.77 1.58 ± 0.79 1.84 ± 1.88

ERK-N
Novice 17.23 ± 23.34 0.042 10.95 ± 19.03 0.062 * 10.46 ± 11.53 0.002Expert 1.56 ± 0.79 1.44 ± 1.36 1.09 ± 1.10

3.2. Validation

The accuracy of classification using the normalized metrics and the investigated classifiers are
shown in Figure 5. Overall, considering the metrics of the arthroscope as the only inputs to the
classifiers provides lower accuracy levels than incorporating the metrics of the instruments in the
classification. In addition, the NN method demonstrated higher accuracy levels compared to the other
classifiers. Accuracy, precision, recall, and F1 score, for using the normalized energy-based metrics
of both hands, including the metrics of the instruments and the arthroscope together, are shown in
Table 3. Although the results were superior for the instrument only, the inclusion of both hands was
considered to be the broader use of the metrics and the corresponding results are reported to allow for
comparison of the different classifiers. The NN method provides the highest accuracy for nearly all of
the tasks and different input metrics. NNs also demonstrate precision levels higher than 75%.
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(a) (b) (c)

Figure 5. Accuracy using (a) only the instrument’s metrics; (b) using only the arthroscope’s metrics;
and (c) using metrics of both the instrument and the arthroscope. SVM: support vector machine; KNN:
K-nearest neighbors; NN: neural network; LDA: linear discriminant analysis.

Table 3. Accuracy, precision, recall, and F1 score as percentages when the normalized energy-based
metrics of both the instrument and the arthroscope are used as inputs of the classifiers.

Task Classifier Accuracy Precision Recall F1 score

1

SVM 94.44 80.00 100.00 88.89
KNN 77.78 50.00 75.00 60.0
NN 88.89 75.00 75.00 75.00

LDA 72.22 42.85 75.00 54.55

2

SVM 80.00 57.14 80.00 66.67
KNN 85.00 75.00 60.00 66.67
NN 95.00 100.00 80.00 88.89

LDA 90.00 80.00 80.00 80.00

3

SVM 93.75 80.00 100.00 88.89
KNN 87.50 66.67 100.00 80.00
NN 93.75 80.00 100.00 88.89

LDA 81.25 60.00 75.00 66.67

Temporal, motion-based and force-based metrics were calculated in a previous study for the same
data set [27]. The results of [27] showed statistically significant differences between the experts and
novices for most of the investigated metrics. The performance of the classifiers in conjunction with
task time, path length for both the instrument and the arthroscope, and maximum bending force were
evaluated and the results are presented in Table 4. As can be seen, the results that were obtained
using the normalized energy-based metrics provide superior accuracy, precision, and recall in a larger
number of conditions of using different classifiers and tasks. However, for some of the conditions,
such as using NN for Tasks 2 and 3, both the energy-based metrics and the non-energy metrics provide
similar accuracy levels.
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Table 4. Accuracy, precision, recall, and F1 score as percentages when task time, path length of both
the instrument and the arthroscope, and maximum bending force of the instrument are used as inputs
to the classifiers.

Task Classifier Accuracy Precision Recall F1 score

1

SVM 66.67 25.00 25.00 25.00
KNN 61.11 0.00 0.00 0.00
NN 83.33 66.67 50.00 57.14

LDA 88.89 75.00 75.00 75.00

2

SVM 80.00 66.67 40.00 50.00
KNN 75.00 50.00 20.00 28.57
NN 95.00 100.00 80.00 88.89

LDA 80.00 100.00 20.00 33.33

3

SVM 81.25 60.00 75.00 66.67
KNN 87.50 75.00 75.00 75.00
NN 93.75 100.00 75.00 85.71

LDA 87.50 100.00 50.00 66.67

The running times were also measured for different tasks and the mean and standard deviations
are represented in Table 5 for various classifiers. As can be seen, NNs require the maximum running
time among the four classifiers investigated in this study. The difference between these running times
was investigated using Kruskal–Wallis test, followed by post-hoc tests. The results of statistical analysis
showed that the running time of NN is significantly different from that of the KNN, SVM, and LDA
with the following p values, respectively: <0.001, 0.001, and 0.044. In addition, the running time of
KNN and LDA were also significantly different (p = 0.001).

Table 5. Mean and standard deviation of the running time for different classifiers.

Classifier SVM KNN NN LDA

Running time (s) 0.969 ± 0.028 0.866 ± 0.039 3.290 ± 0.452 1.015 ± 0.033
(Mean ± SD)

4. Discussion

The goal of this study was to develop new metrics for arthroscopic skills assessment and evaluate
the use of these metrics with different classifiers to determine a subject’s level of expertise. The results
of this study are discussed in detail in the following sections.

4.1. Normalized Energy-Based Metrics

All energy-based metrics showed higher levels of energy expenditure for novices compared to
experts. This is due to a larger number of movements of the instrument or the arthroscope and higher
levels of applied forces that were unnecessary for completion of the task. These unnecessary forces and
movements can be due to lack of appropriate control over the instrument or the arthroscope. The tasks
we studied were designed to focus on the performance of the instrument. However, it was noticed that
there were significant differences in manipulating the arthroscope between the experts and novices.
The unnecessary arthroscope movements may have been generated as a result of motor overflow,
which can occur in effortful actions [28,29]. It was also observed in [30] that an unsuccessful navigation
in cadaver models using an arthroscope generates large number of fluctuations in the applied force.
The arthroscopic tasks studied here were comprehended as complicated motor activities for many of
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the novices. The statistical significant difference between novices and experts and the approximately
similar accuracy levels that various classifiers provided for each task support the presence of a strong
relationship between the normalized energy-based metrics and level of expertise. The comparison
between the energy-based metrics and the combination of time, path length, and maximum force
showed that higher accuracy levels can be achieved for all three tasks studied using energy-based
metrics in conjunction with some of the classifiers such as SVM.

4.2. Instrument, Arthroscope, or Both?

A maximum accuracy of 95% was obtained for all three input conditions, Figure 5. However, the
overall accuracy levels for different tasks were lower when the arthroscope’s metrics were the only
inputs to the classifiers. Regarding the arthroscope’s metrics, it should be considered that these
metrics were developed based on the motion parameters only and the work-based metric was not
calculated. This indicates the importance of measuring force for surgical skills assessment, which is
in accordance with the results found in [18,31]. The inferior results of skills assessment based on the
arthroscope’s metrics can be due to the absence of a work-based metric in the assessment or because of
the secondary role of the arthroscope in performing the tasks. However, for other tasks that require
further navigation of the arthroscope, more accurate identification might be obtained by incorporating
the arthroscope’s metrics.

4.3. Classifiers

The classifiers investigated in this study are among the machine learning algorithms that do not
require heavy computations. These classifiers provided approximately similar results. However, the KNN
and LDA have demonstrated the minimum accuracy and precision among the classifiers used. The LDA
reduces the dimension of the input data and in this procedure tries to maximize the distance between the
mean values of the two groups. However, the difference between the mean values of the two groups is
not usually the best criterion of discrimination. Since normality is among the assumptions of the LDA,
another reason for the low accuracy of this classifier may be the non-normal distribution of some of the
normalized energy-based metrics. The KNN classifiers do not require a particular distribution of the
samples, but have shortcomings such as sensitivity to the local structure of the data and the curse of
dimensionality. In addition, the performance of KNN is affected by the value of K, which in our study
was limited due to the limited number of experts.

SVM and NNs provided promising results. The range of accuracy of NNs was 89–95%. In this
study, a simple configuration was considered for the NN to prevent overfitting. This method is
robust to an increase in the number of inputs and is also capable of learning non-linear relationships.
However, a dependency on the initial conditions and a large computational burden can be cited as
disadvantages of this method. SVM provides a unique solution for classification and offers a reasonable
computational time. This method provides the highest accuracy levels (95%) but when considering the
arthroscope’s metrics for Task 2, SVM did not demonstrate a high accuracy.

The results of our study are comparable to the results of previous studies in surgical skills
assessment. According to our results, the groups of novices and experts can be discriminated with
95% accuracy, which is slightly higher than the results reported in [17,20] (92%) and is slightly lower
than the results of [18] (100%). However, it should be noted that these results also depend on the tasks
studied, the diversity of subjects, and data recording methods. The results of our method, which are
also close to the accuracy level of previous studies, demonstrate the high potential of the proposed
metrics and classifiers for surgical skills assessment.

4.4. Tasks

In this study, two probing tasks (Task 1 and Task 2) were investigated in different shoulder
locations. The two non-significant differences between novices and experts were found for the
normalized rotational kinetic energy for Task 2. The difficult posture required to press the switches in
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this task increased the complexity of the task, even for some of the expert subjects. This task might be
valuable for studies that also investigate intermediate levels of expertise. Task 1 and Task 3 demonstrated
suitable levels of difficulty for distinguishing the two levels of expertise. However, performing Task 3
in a wet environment—closer to a real surgical condition—can possibly increase the difficulty of this
task by impacting the degree of visibility of the anatomical structures.

To summarize, the energy-based metrics were analyzed for the first time for arthroscopic tasks.
In addition, a new energy-based metric, rotational kinetic energy, was proposed and evaluated.
In this study, the role of the arthroscope was secondary relative to the role of the other instrument in
completing the tasks. However, it was shown that even for the arthroscope, there was a significant
difference between experts and novices in terms of the energy-based metrics. The normalization
of the metrics provided additional information about variation in performance in the novice and
expert groups. Furthermore, various machine learning algorithms were evaluated in conjunction with
the normalized metrics to establish the appropriate combination of the proposed metrics, and their
performances were evaluated by implementing various measures. Although this study uses some
of the energy-based metrics that were introduced in our earlier study, several new aspects of their
use have been investigated for the first time and have been modified to improve the quality of skills
assessment. In addition to the above novelties and in comparison with other studies in the area of
surgical skills assessment, this study evaluates various machine learning algorithms for the normalized
energy-based metrics and for arthroscopic tasks.

5. Conclusions and Future Work

This study proposed novel performance metrics based on normalized mechanical energy and
work. The incorporation of these metrics for arthroscopic skills assessment was studied. For this
purpose, various machine learning classifiers were investigated, among which support vector machines
(SVM) and neural networks (NNs) demonstrated high discrimination capabilities. The validation
results showed that these metrics are capable of differentiating between novices and experts with
95% accuracy. It was also demonstrated that the work-based metrics can enhance the accuracy of
classification. Consequently, it is recommended that force sensing is incorporated into data recording
system to establish a more accurate assessment method. Overall, our results show that normalized
energy-based metrics can enhance arthroscopic skills assessment. The normalization of the metrics using
ideal performance metrics allows trainees to compare their performance with the ideal performance.

One of the future works of this study is to record further performance data for the arthroscopic
tasks. Larger numbers of samples would provide more comprehensive models of performance at
each level of expertise. In particular, more data related to expert performance can be used to further
refine the criteria of expertise. Investigating the use of these metrics for finer classification of the
levels of expertise, including intermediate levels, is another future direction of this study. In addition,
the appropriate form of using the energy-based metrics for providing feedback and the methods for
presenting this data to trainees need to be explored as part of future work.

Acknowledgments: This research and the publication cost were supported by Faculty Support for Research in
Education Grant, by the Natural Sciences and Engineering Research Council (NSERC) of Canada under grants
RGPIN-1345, RGPIN-2014-03815, and RGPIN-312383; by the Ontario Research Fund—Research Excellence Grant
RE-05-049, and by infrastructure grants from the Canada Foundation for Innovation awarded to the London
Health Sciences Center (Canadian Surgical Technologies & Advanced Robotics (CSTAR)).

Author Contributions: B.P. was involved in idea development, data collection, data processing and writing the
manuscript. L.C.M. and A.E. prepared the experimental setup and contributed in data collection. M.-E.L., R.V.P.,
M.D.N., and A.L.T. supervised the project in every aspect including idea development, theoretical evaluation,
experiment design, and manuscript revision. A.L.T. was the project leader.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2017, 17, 1808 15 of 16

References

1. Roberts, P.G.; Guyver, P.; Baldwin, M.; Akhtar, K.; Alvand, A.; Price, A.J.; Rees, J.L. Validation of the updated
ArthroS simulator: Face and construct validity of a passive haptic virtual reality simulator with novel
performance metrics. Knee Surg. Sports Traumatol. Arthrosc. 2016, 25, 616–625.

2. Reiley, C.E.; Lin, H.C.; Yuh, D.D.; Hager, G.D. Review of methods for objective surgical skill evaluation.
Surg. Endosc. 2011, 25, 356–366.

3. Hoyle, A.C.; Whelton, C.; Umaar, R.; Funk, L. Validation of a global rating scale for shoulder arthroscopy:
A pilot study. Shoulder Elb. 2012, 4, 16–21.

4. Tashiro, Y.; Miura, H.; Nakanishi, Y.; Okazaki, K.; Iwamoto, Y. Evaluation of skills in arthroscopic training
based on trajectory and force data. Clin. Orthop. Relat. Res. 2009, 467, 546–552.

5. Martin, K.D.; Belmont, P.J.; Schoenfeld, A.J.; Todd, M.; Cameron, K.L.; Owens, B.D. Arthroscopic basic task
performance in shoulder simulator model correlates with similar task performance in cadavers. J. Bone
Joint Surg. 2011, 93, doi:10.2106/JBJS.J.01368.

6. Escoto, A.; Le Ber, F.; Trejos, A.L.; Naish, M.D.; Patel, R.V.; LeBel, M.E. A knee arthroscopy simulator:
Design and validation. In Proceedings of the 35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5715–5718.

7. Oropesa, I.; Sánchez-González, P.; Lamata, P.; Chmarra, M.K.; Pagador, J.B.; Sánchez-Margallo, J.A.;
Sánchez-Margallo, F.M.; Gómez, E.J. Methods and tools for objective assessment of psychomotor skills in
laparoscopic surgery. J. Surg. Res. 2011, 171, doi:10.1016/j.jss.2011.06.034.

8. Escoto, A.; Trejos, A.L.; Naish, M.D.; Patel, R.V.; LeBel, M.E. Force sensing-based simulator for arthroscopic
skills assessment in orthopaedic knee surgery. In Medicine Meets Virtual Reality; IOS Press: Amsterdam, The
Netherlands, 2012; pp. 129–135.

9. Puangmali, P.; Althoefer, K.; Seneviratne, L.D.; Murphy, D.; Dasgupta, P. State-of-the-art in force and tactile
sensing for minimally invasive surgery. IEEE Sens. J. 2008, 8, 371–381.

10. Cutler, N.; Balicki, M.; Finkelstein, M.; Wang, J.; Gehlbach, P.; McGready, J.; Iordachita, I.; Taylor, R.;
Handa, J.T. Auditory force feedback substitution improves surgical precision during simulated ophthalmic
surgery. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1316–1324.

11. Guthrie, E.R. The Psychology of Learning; Harper: Oxford, UK, 1952.
12. Elliott, D.; Grierson, L.E.; Hayes, S.J.; Lyons, J. Action representations in perception, motor control and

learning: implications for medical education. Med. Educ. 2011, 45, 119–131.
13. Elliott, D.; Hansen, S.; Mendoza, J.; Tremblay, L. Learning to optimize speed, accuracy, and energy

expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. J. Mot. Behav.
2004, 36, 339–351.

14. Cavallo, F.; Sinigaglia, S.; Megali, G.; Pietrabissa, A.; Dario, P.; Mosca, F.; Cuschieri, A. Biomechanics–machine
learning system for surgical gesture analysis and development of technologies for minimal access surgery.
Surg. Innov. 2014, 21, 504–512.

15. Poursartip, B.; LeBel, M.E.; Patel, R.V.; Naish, M.D.; Trejos, A.L. Energy-based metrics for laparoscopic
skills assessment. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2648–2651.

16. Poursartip, B.; LeBel, M.E.; Patel, R.V.; Naish, M.D.; Trejos, A.L. Analysis of energy-based metrics for
laparoscopic skills assessment. Accepted for publication in the IEEE Transactions on Biomedical Engineering 2017.
Available online: http://ieeexplore.ieee.org/document/7932145 (accessed on 19 May 2017).

17. Ahmidi, N.; Poddar, P.; Jones, J.D.; Vedula, S.S.; Ishii, L.; Hager, G.D.; Ishii, M. Automated objective surgical
skill assessment in the operating room from unstructured tool motion in septoplasty. Int. J. Comput. Assist.
Radiol. Surg. 2015, 10, 981–991.

18. Horeman, T.; Dankelman, J.; Jansen, F.W.; van den Dobbelsteen, J.J. Assessment of laparoscopic skills based
on force and motion parameters. IEEE Trans. Biomed. Eng. 2014, 61, 805–813.

19. Chmarra, M.K.; Klein, S.; de Winter, J.C.; Jansen, F.W.; Dankelman, J. Objective classification of residents
based on their psychomotor laparoscopic skills. Surg. Endosc. 2010, 24, 1031–1039.

20. Richstone, L.; Schwartz, M.J.; Seideman, C.; Cadeddu, J.; Marshall, S.; Kavoussi, L.R. Eye metrics as an
objective assessment of surgical skill. Ann. Surg. 2010, 252, 177–182.

http://ieeexplore.ieee.org/document/7932145


Sensors 2017, 17, 1808 16 of 16

21. McCracken, L.C. Development of a Physical Shoulder Simulator for the Training of Basic Arthroscopic Skills.
Master’s Thesis, Biomedical Engineering Program, Western University, London, ON, Canada, 2015.

22. Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics), 2nd ed; Springer:
New York, NY, USA, 2007.

23. Xu, S.; Chen, L. A novel approach for determining the optimal number of hidden layer neurons for FNN’s
and its application in data mining. In Proceedings of the 5th International Conference on Information
Technology and Applications (ICITA), Cairns, Queensland, Australia, 23–26 June 2008; pp. 683–686.

24. Reiley, C.E.; Hager, G.D. Decomposition of robotic surgical tasks: An analysis of subtasks and their
correlation to skill. In M2CAI Workshop; MICCAI: London, UK, 2009.

25. Despinoy, F.; Bouget, D.; Forestier, G.; Penet, C.; Zemiti, N.; Poignet, P.; Jannin, P. Unsupervised trajectory
segmentation for surgical gesture recognition in robotic training. IEEE Trans. Biomed. Eng. 2016,
63, 1280–1291.

26. Kumar, R.; Jog, A.; Malpani, A.; Vagvolgyi, B.; Yuh, D.; Nguyen, H.; Hager, G.; Chen, C.C.G. Assessing
system operation skills in robotic surgery trainees. Int. J. Med. Robot. Comput. Assist. Surg. 2012, 8, 118–124.

27. Poursartip, B.; McCracken, L.; Escoto, A.; Patel, R.; LeBel, M.; Trejos, A.; Naish, M. Development and
evaluation of a sensorized shoulder simulator. In Proceedings of the 30th Canadian Conference of the IEEE
Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 1–3 May 2017.

28. Bodwell, J.A.; Mahurin, R.K.; Waddle, S.; Price, R.; Cramer, S.C. Age and features of movement influence
motor overflow. J. Am. Geriatr. Soc. 2003, 51, 1735–1739.

29. Addamo, P.K.; Farrow, M.; Bradshaw, J.L.; Georgiou-Karistianis, N. Relative or absolute? Implications and
consequences of the measures adopted to investigate motor overflow. J. Mot. Behav. 2011, 43, 203–212.

30. Horeman, T.; Tuijthof, G.; Wulms, P.; Kerkhoffs, G.; Gerards, R.; Karahan, M. A Force Measurement System
for Training of Arthroscopic Tissue Manipulation Skills on Cadaveric Specimen. J. Med. Devices 2016,
10, 044508.

31. Trejos, A.L.; Patel, R.V.; Malthaner, R.A.; Schlachta, C.M. Development of force-based metrics for skills
assessment in minimally invasive surgery. Surg. Endosc. 2014, 28, 2106–2119.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Energy-based metrics for arthroscopic skills assessment
	Citation of this paper:
	Authors

	Introduction
	Skills Assessment in Minimally Invasive Surgery
	Objectives

	Methods
	Experimental Design
	Metrics
	Trainee Classification
	Validation
	Leave-One-Subject-Out Cross-Validation
	Computation Time


	Results
	Energy-Based Metrics and Normalized Energy-Based Metrics
	Validation

	Discussion
	Normalized Energy-Based Metrics
	Instrument, Arthroscope, or Both?
	Classifiers
	Tasks

	Conclusions and Future Work

