3,473 research outputs found
Prospects for the measurement of B_s oscillations with the ATLAS detector at LHC
The prospects for the measurement of oscillations with the ATLAS
detector at the Large Hadron Collider are presented. candidates in
the and decay modes from semileptonic
events were fully simulated and reconstructed, using a detailed detector
description. The sensitivity and the expected accuracy for the measurement of
the oscillation frequency were derived from unbinned maximum likelihood
amplitude fits as functions of the integrated luminosity. A detailed treatment
of the systematic uncertainties was performed. The dependence of the
measurement sensitivity on various parameters was also evaluated.Comment: Invited talk at the Workshop on the CKM Unitarity Triangle, IPPP
Durham, April 2003 (eConf C0304052). 4 pages LaTeX, 2 eps figure
Experimental verification of the Heisenberg uncertainty principle for hot fullerene molecules
The Heisenberg uncertainty principle for material objects is an essential
corner stone of quantum mechanics and clearly visualizes the wave nature of
matter. Here we report a demonstration of the Heisenberg uncertainty principle
for the most massive, complex and hottest single object so far, the fullerene
molecule C70 at a temperature of 900 K. We find a good quantitative agreement
with the theoretical expectation: dx * dp = h, where dx is the width of the
restricting slit, dp is the momentum transfer required to deflect the fullerene
to the first interference minimum and h is Planck's quantum of action.Comment: 4 pages, 4 figure
Quantum Theory Approach for Neutron Single and Double-Slit Diffraction
We provide a quantum approach description of neutron single and double-slit
diffraction, with specific attention to the cold neutron diffraction (\AA) carried out by Zeilinger et al. in 1988. We find the
theoretical results are good agreement with experimental data.Comment: 10 page
Decoherence in a Talbot Lau interferometer: the influence of molecular scattering
We study the interference of C70 fullerenes in a Talbot-Lau interferometer
with a large separation between the diffraction gratings. This permits the
observation of recurrences of the interference contrast both as a function of
the de Broglie wavelength and in dependence of the interaction with background
gases. We observe an exponential decrease of the fringe visibility with
increasing background pressure and find good quantitative agreement with the
predictions of decoherence theory. From this we extrapolate the limits of
matter wave interferometry and conclude that the influence of collisional
decoherence may be well under control in future experiments with proteins and
even larger objects.Comment: 8 pages, 5 figure
High-efficiency quantum interrogation measurements via the quantum Zeno effect
The phenomenon of quantum interrogation allows one to optically detect the
presence of an absorbing object, without the measuring light interacting with
it. In an application of the quantum Zeno effect, the object inhibits the
otherwise coherent evolution of the light, such that the probability that an
interrogating photon is absorbed can in principle be arbitrarily small. We have
implemented this technique, demonstrating efficiencies exceeding the 50%
theoretical-maximum of the original ``interaction-free'' measurement proposal.
We have also predicted and experimentally verified a previously unsuspected
dependence on loss; efficiencies of up to 73% were observed and the feasibility
of efficiencies up to 85% was demonstrated.Comment: 4 pages, 3 postscript figures. To appear in Phys. Rev. Lett;
submitted June 11, 199
Illusory Decoherence
If a quantum experiment includes random processes, then the results of
repeated measurements can appear consistent with irreversible decoherence even
if the system's evolution prior to measurement was reversible and unitary. Two
thought experiments are constructed as examples.Comment: 10 pages, 3 figure
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
- âŠ