14 research outputs found

    A comparative study of cellulase production in inorganic and organic supplements by a cellulolytic tree bark fungus

    Get PDF
    The study was conducted to compare the cellulase production using organic and inorganic supplements by isolating a tree bark (Mangifera indica) fungus, for a cost-effective cellulase production. Three fungi (f1, f2 and f3) were isolated from the bark of the tree, of which f3 was found to be potential in cellulase production which was confirmed by primary screening (congo red activity staining). Through endoglucanase and total cellulase activity assays, it was observed that the isolated strain exhibited cellulase activity of 0.25 U/ml for endoglucanase when 1% CMC was supplemented to the medium. An activity of 8 IU/g towards FPase and for endoglucanase 10.35 U/g was obtained on non-purified inorganic supplements. Sugarcane bagasse was found to be the best inorganic supplement for cellulase production. Here, we try to adopt a cost-effective production strategy of cellulase. The future perspective of this investigation is to identify the strain and purification of the enzyme for industrial purpose

    Anthraquinones from leaves of Tectona grandis: A detailed study on its antibacterial activity and other biological properties

    Get PDF
    The search for new molecules against pathogenic species continues unabated due to drug resistance. Tectona grandis, commonly known as teak, is a widespread woody plant with lot of biological properties. In the present study, attempts were made to isolate antibacterial compounds from Tectona grandis against Staphylococcus aureus, Klebsiella pneumoniae, Salmonella paratyphi and Proteus mirabilis at different concentration. Antimycobacterial activity was checked against Mycobacterium tuberculosis. Cytotoxicity of isolated compounds was evaluated. As part of activity studies, antioxidant potential of both compounds was also checked. Antibacterial activity was checked by disc diffusion and microplate dilution method. Cytotoxicity of pure compounds was evaluated by MTT assay. Antioxidant activity was checked against DPPH and ABTS+ free radicals. Two compounds isolated from chloroform extract of leaf showed activity against S. aureus (Compound 1: MIC – 2.5μg/ml, IC50 - 72μg/ml ; Compound 2: MIC - 5 μg/ml, IC50 - 98 μg/ml) and K. pneumoniae (Compound 2: MIC – 6.2 μg/ml, IC50 – 113.5 μg/ml). These compounds failed to show antimycobacterial activity on testing against M. tuberculosis. On cytotoxicity analysis of both compounds against chick embryo fibroblast (CEF), HEK293, HCT119 and L929 cells, compound 2 showed activity against HEK293 (IC50 - 2 μg/ml). Antioxidant activity of these compounds was very low and was able to scavenge only 10% of free radicals even at the highest concentration (1000 μg/ml) tested. Purity of compounds was confirmed by HPLC analysis and structural characterization was carried out based on IR and NMR spectral data with supporting phytochemical results. Keywords: Anti-bacterial, Anthraquinones, MIC, MTT assay, Antioxidant, Anti-mycobacterial, HPLC profile, Structural studies

    Anthraquinones from leaves of Tectona grandis: A detailed study on its antibacterial activity and other biological properties

    Get PDF
    The search for new molecules against pathogenic species continues unabated due to drug resistance. Tectona grandis, commonly known as teak, is a widespread woody plant with lot of biological properties. In the present study, attempts were made to isolate antibacterial compounds from Tectona grandis against Staphylococcus aureus, Klebsiella pneumoniae, Salmonella paratyphi and Proteus mirabilis at different concentration. Antimycobacterial activity was checked against Mycobacterium tuberculosis. Cytotoxicity of isolated compounds was evaluated. As part of activity studies, antioxidant potential of both compounds was also checked. Antibacterial activity was checked by disc diffusion and microplate dilution method. Cytotoxicity of pure compounds was evaluated by MTT assay. Antioxidant activity was checked against DPPH and ABTS+ free radicals. Two compounds isolated from chloroform extract of leaf showed activity against S. aureus (Compound 1: MIC – 2.5μg/ml, IC50 - 72μg/ml ; Compound 2: MIC - 5 μg/ml, IC50 - 98 μg/ml) and K. pneumoniae (Compound 2: MIC – 6.2 μg/ml, IC50 – 113.5 μg/ml). These compounds failed to show antimycobacterial activity on testing against M. tuberculosis. On cytotoxicity analysis of both compounds against chick embryo fibroblast (CEF), HEK293, HCT119 and L929 cells, compound 2 showed activity against HEK293 (IC50 - 2 μg/ml). Antioxidant activity of these compounds was very low and was able to scavenge only 10% of free radicals even at the highest concentration (1000 μg/ml) tested. Purity of compounds was confirmed by HPLC analysis and structural characterization was carried out based on IR and NMR spectral data with supporting phytochemical results. Keywords: Anti-bacterial, Anthraquinones, MIC, MTT assay, Antioxidant, Anti-mycobacterial, HPLC profile, Structural studies

    Antiproliferative effects of total alkaloid extract of roots of Chassalia curviflora (Wall.) Thwaites on cancer cell lines

    Get PDF
    389-395Chassalia curviflora is used in folklore medicines for treating several ailments and infections owing to its anti-inflammatory properties. Though the plant has been reported to possess anti-inflammatory antihepatotoxic and analgesic activities, its anticancer potential has not been studied so far. In the present study, we investigated the antiproliferative effects of the total alkaloids isolated from the roots of C. curviflora. The total alkaloid was validated by MTT assay in three cancer cell lines, such as liver cancer cell line-A549, breast cancer cell line-MCF-7 and ovarian cancer cell line -HeLa. Significant antiproliferative effect (IC50 value 3.59±0.14*** µg/mL) was observed in A549 cells, and was taken for further studies. Cell cycle analysis showed that the cells got arrested in sub G0 phase and annexin V-FITC assay revealed that 27.4% cells were in early apoptosis and 7% cells in late apoptosis. The study revealed that the total alkaloids of Chassalia curviflora roots possess significant antiproliferative and apoptotic activity

    Ophiorrhiza mungos var. angustifolia – Estimation of camptothecin and pharmacological screening

    Get PDF
    Ophiorrhiza mungose var. angustifolia (Thwaites) Hook. f (Family- Rubiaceae) is a recently identified plant from Ophiorrhiza species in Western Ghats of Kerala. The plant is a promising candidate for the production of camptothecin (CPT) - a high value anticancer compound. Preliminary screening of hexane and methanol extract revealed the presence of phenolics, flavonoids, caumarins, steroids, terpeanoids, saponins, carbohydrates and alkaloids. Camptothecin was estimated from methanol extract using high performance liquid chromatography and the level of CPT was 297.94 ± 2.27 µg/g dry weight. The in vitro antioxidant assay revealed both extract showed moderate level of total phenolic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferric chloride reducing power assay, phospho-molybdate assay of total anti-oxidant capacity and nitric oxide scavenging activity assay. Antimicrobial study reveals that only hexane extract inhibits pathogenic bacteria and fungus. Overall these findings will lead to isolation of active compounds other than camptothecin, elucidate them against wider range of bioactivity studies to find new therapeutic principles

    Antiproliferative effects of total alkaloid extract of roots of Chassaliacurviflora (Wall.) Thwaites on cancer cell lines

    Get PDF
    Chassaliacurviflora is used in folklore medicines for treating several ailments and infections owing to its anti-inflammatory properties. Though the plant has been reported to possess anti-inflammatory antihepatotoxic and analgesic activities, its anticancer potential has not been studied so far. In the present study, we investigated the antiproliferative effects of the total alkaloids isolated from the roots of C. curviflora.The total alkaloid was validated by MTT assay in three cancer cell lines, such as liver cancer cell line-A549, breast cancer cell line-MCF-7 and ovarian cancer cell line -HeLa. Significant antiproliferative effect (IC50 value 3.59±0.14*** µg/mL) was observed in A549 cells, and was taken for further studies. Cell cycle analysis showed that the cells got arrested in sub G0 phase and annexin V-FITC assay revealed that 27.4% cells were in early apoptosis and 7% cells in late apoptosis. The study revealed that the total alkaloids of Chassaliacurvifloraroots possess significant antiproliferative and apoptotic activit

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool
    corecore