127 research outputs found

    The role of TRIM39 in cell cycle and apoptosis

    Get PDF
    <p>Within individual cells, the opposing processes of proliferation and apoptosis are precisely regulated. When this regulatory balance is interrupted, cells may become abnormal or even transformed. Understanding how to reverse or avoid these detrimental transformative processes begins with an intimate knowledge of the processes governing the cell cycle and apoptosis. Cell proliferation is governed by the cell cycle machinery. The cell cycle is driven by Cyclin-dependent kinase (Cdk) activity, which is dependent on the availability of specific Cyclin binding partners. The amount of available Cyclin is tightly controlled by a ubiquitin ligase protein complex called the anaphase promoting complex/cyclosome (APC/C.) This complex mediates the timely ubiquitylation and degradation of cell cycle regulators in order to control mitotic exit, the G1/S transition and to respond to signals emanating from spindle assembly checkpoint. </p><p>Given the importance of the APC/C, cells develop many ways to regulate APC/C activity. Post-translational modifications of the APC/C have been shown to alter its functionality, and many pseudosubstrate-based inhibitors have been discovered. Moreover, inhibitors such as Emi1 and Emi2, have been showed to inhibit the APC/C through their own intrinsic ubiquitin E3 ligase activities. Utilizing the <italic>Xenopus</italic> egg extract system, our laboratory has previously demonstrated that the RING domain-containing ubiquitin E3 ligase Xnf7 can inhibit Xenopus APC/C activity. In the thesis, we have identified TRIM39 as an Xnf7-related human regulator of the APC/C. Our study showed that TRIM39 restrains the ability of the APC/C to ubiquitylate Cyclin B in vitro and attenuates the degradation of Cyclin B and geminin when TRIM39 is incubated in cell lysates. Notably, it has been reported that TRIM39 activity is responsible for the accumulation of the Bax-interacting protein (and activator) MOAP-1 following etoposide-induced DNA damage. Our data indicated that MOAP-1 is a novel APC/C substrate, and that the ligase activity of TRIM39 appears to be essential for preventing its degradation. We further demonstrated that decreased levels of the APC/C activator Cdh1 induces MOAP-1 protein accumulation, thereby promoting DNA damage-induced apoptosis in 293T, PC3 and H1299 cells. This study illustrates a potential function for the APC/C in DNA damage induced apoptosis and also demonstrates that TRIM39 regulates both the cell cycle and apoptosis via APC/C inhibition.</p><p>To extend our observations regarding the role for TRIM39 in APC/C regulation, we investigated effects on the cell cycle via real-time imaging microscopy. We found cells arrest at G1/S in TRIM39 depleted RPE cells, a cell line which is commonly used for cell cycle analysis. This arrest phenotype is not observed in 293T, PC3 and H1299 cells which bear mutant p53 alleles. Further analysis showed that TRIM39 depleted RPE cells upregulate many genes that function downstream of p53 activity, such as the cdk inhibitor p21--thus, arresting cells at G1/S and reducing proliferation. The reduced growth can be rescued by p53 knockdown. Mechanistically, TRIM39 interacts with p53 and promotes destruction of p53 by ubiquitylation. This ubiquitylation is independent of the activity of the most intensively studied p53-directed E3 ligase, MDM2; depletion of both MDM2 and TRIM39 has a synergistic effect on p53 accumulation. This elevated p53 leads to more apoptosis in cancer cells bearing wildtype p53. Consequently, TRIM39 depletion might be employed as a combination treatment with MDM2 inhibitor, such as nutlin-3a, to stimulate tumor cell death.</p><p>In the thesis, we have found TRIM39 inhibits both the APC/C and p53. Both are essential regulators of cell cycle and apoptosis. Moreover, we have determined that the inhibitory activity of TRIM39 requires its E3 ligase activity. Future experiments will be directed towards investigating how TRIM39 protein stability and ligase activity are regulated to understand more fully the physiological situations in which TRIM39 is able to exert its ability to modulate the cell cycle and apoptosis. I will also discuss some preliminary data regarding changes in TRIM39 ligase activity induced by Chk1 and changes in TRIM39 protein abundance regulated by polo-like kinase 1(Plk1). Chk1 and Plk1 are essential kinases for cell cycle checkpoint and progression. Connecting Chk1 and Plk1 to TRIM39 may provide a more thorough understanding of TRIM39's ability to control the APC/C inhibition and p53 ubiquitylation in response to cell cycle or cell damage cues. Since the APC/C and p53 both can regulate cell cycle and apoptosis, further investigations into the involvement of TRIM39 in the life-or-death decision will be of great interest.</p>Dissertatio

    Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells

    Get PDF
    The study of isolated primary progenitor cells offers great insight into developmental biology and human disease. In particular, ex vivo culture of isolated primary erythroid progenitor cells replicates the differentiation events that occur during in vivo erythropoiesis. Herein we report a high-efficiency method for CRISPR-Cas9 mediated gene disruption in isolated primary erythroid progenitor cells. We use this method to generate the novel result that Lmna is required in terminal erythroid differentiation.Frederick Lovejoy (Research Grant)National Institutes of Health (U.S.) (grant NIH/NHLBI 2 P01 HL032262-25

    Gaussian Boson Sampling with Pseudo-Photon-Number Resolving Detectors and Quantum Computational Advantage

    Full text link
    We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ~ 600 years using exact methods, whereas our quantum computer, Jiuzhang 3.0, takes only 1.27 us to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier ~ 3.1*10^10 years.Comment: submitted on 10 Apri

    Gaussian Boson Sampling with Pseudo-Photon-Number-Resolving Detectors and Quantum Computational Advantage

    Get PDF
    We report new Gaussian boson sampling experiments with pseudo-photon-number-resolving detection, which register up to 255 photon-click events. We consider partial photon distinguishability and develop a more complete model for the characterization of the noisy Gaussian boson sampling. In the quantum computational advantage regime, we use Bayesian tests and correlation function analysis to validate the samples against all current classical spoofing mockups. Estimating with the best classical algorithms to date, generating a single ideal sample from the same distribution on the supercomputer Frontier would take ∼600 yr using exact methods, whereas our quantum computer, Jizhāng 3.0, takes only 1.27 μs to produce a sample. Generating the hardest sample from the experiment using an exact algorithm would take Frontier∼3.1×1010 yr.</p

    Enhanced phosphocholine metabolism is essential for terminal erythropoiesis

    Get PDF
    Red cells contain a unique constellation of membrane lipids. Although much is known about regulated protein expression, the regulation of lipid metabolism during erythropoiesis is poorly studied. Here, we show that transcription of PHOSPHO1, a phosphoethanolamine and phosphocholine phosphatase that mediates the hydrolysis of phosphocholine to choline, is strongly upregulated during the terminal stages of erythropoiesis of both human and mouse erythropoiesis, concomitant with increased catabolism of phosphatidylcholine (PC) and phosphocholine as shown by global lipidomic analyses of mouse and human terminal erythropoiesis. Depletion of PHOSPHO1 impaired differentiation of fetal mouse and human erythroblasts, and, in adult mice, depletion impaired phenylhydrazine-induced stress erythropoiesis. Loss of PHOSPHO1 also impaired phosphocholine catabolism in mouse fetal liver progenitors and resulted in accumulation of several lipids; adenosine triphosphate (ATP) production was reduced as a result of decreased oxidative phosphorylation. Glycolysis replaced oxidative phosphorylation in PHOSPHO1-knockout erythroblasts and the increased glycolysis was used for the production of serine or glycine. Our study elucidates the dynamic changes in lipid metabolism during terminal erythropoiesis and reveals the key roles of PC and phosphocholine metabolism in energy balance and amino acid supply.United States. Defense Advanced Research Projects Agency (Contract HR0011-14-2-0005)National Heart, Lung, and Blood Institute (Grant 2 P01 HL032262-25

    Dynamics of Oxygen-Independent Photocleavage of Blebbistatin as a One-Photon Blue or Two-Photon Near-Infrared Light-Gated Hydroxyl Radical Photocage

    Get PDF
    Development of versatile, chemically tunable photocages for photoactivated chemotherapy (PACT) represents an excellent opportunity to address the technical drawbacks of conventional photodynamic therapy (PDT) whose oxygen-dependent nature renders it inadequate in certain therapy contexts such as hypoxic tumors. As an alternative to PDT, oxygen free mechanisms to generate cytotoxic reactive oxygen species (ROS) by visible light cleavable photocages are in demand. Here, we report the detailed mechanisms by which the small molecule blebbistatin acts as a one-photon blue light-gated or two-photon near-infrared light-gated photocage to directly release a hydroxyl radical (•OH) in the absence of oxygen. By using femtosecond transient absorption spectroscopy and chemoselective ROS fluorescent probes, we analyze the dynamics and fate of blebbistatin during photolysis under blue light. Water-dependent photochemistry reveals a critical process of water-assisted protonation and excited state intramolecular proton transfer (ESIPT) that drives the formation of short-lived intermediates, which surprisingly culminates in the release of •OH but not superoxide or singlet oxygen from blebbistatin. CASPT2//CASSCF calculations confirm that hydrogen bonding between water and blebbistatin underpins this process. We further determine that blue light enables blebbistatin to induce mitochondria-dependent apoptosis, an attribute conducive to PACT development. Our work demonstrates blebbistatin as a controllable photocage for •OH generation and provides insight into the potential development of novel PACT agents

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    Activin B Promotes Epithelial Wound Healing In Vivo through RhoA-JNK Signaling Pathway

    Get PDF
    Background: Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated. Principal Findings: In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 59-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing. Conclusion: These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock
    corecore