37 research outputs found

    Blue cone monochromacy: causative mutations and associated phenotypes.

    Get PDF
    PurposeTo perform a phenotypic assessment of members of three British families with blue cone monochromatism (BCM), and to determine the underlying molecular genetic basis of disease.MethodsAffected members of three British families with BCM were examined clinically and underwent detailed electrophysiological and psychophysical testing. Blood samples were taken for DNA extraction. Molecular analysis involved the amplification of the coding regions of the long (L) and medium (M) wave cone opsin genes and the upstream locus control region (LCR) by polymerase chain reaction (PCR). Gene products were directly sequenced and analyzed.ResultsIn all three families, genetic analysis identified that the underlying cause of BCM involved an unequal crossover within the opsin gene array, with an inactivating mutation. Family 1 had a single 5'-L-M-3' hybrid gene, with an inactivating Cys203Arg (C203R) mutation. Family 3 had an array composed of a C203R inactivated 5'-L-M-3' hybrid gene followed by a second inactive gene. Families 1 and 3 had typical clinical, electrophysiological, and psychophysical findings consistent with stationary BCM. A novel mutation was detected in Family 2 that had a single hybrid gene lacking exon 2. This family presented clinical and psychophysical evidence of a slowly progressive phenotype.ConclusionsTwo of the BCM-causing family genotypes identified in this study comprised different hybrid genes, each of which contained the commonly described C203R inactivating mutation. The genotype in the family with evidence of a slowly progressive phenotype represents a novel BCM mutation. The deleted exon 2 in this family is not predicted to result in a shift in the reading frame, therefore we hypothesize that an abnormal opsin protein product may accumulate and lead to cone cell loss over time. This is the first report of slow progression associated with this class of mutation in the L or M opsin genes in BCM

    Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration

    Get PDF
    Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic ‘gain of function’, such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases

    The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway

    Get PDF
    Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA). AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway

    X-linked cataract and Nance-Horan syndrome are allelic disorders

    Get PDF
    Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved

    A dual role for EDEM1 in the processing of rod opsin

    Get PDF
    Mutations in rod opsin, the archetypal G-protein-coupled receptor, cause retinitis pigmentosa. The majority of mutations, e.g. P23H, cause protein misfolding, resulting in ER retention, induction of the unfolded protein response and degradation by ERAD. If misfolded rod opsin escapes degradation, it aggregates and forms intracellular inclusions. Therefore, it is important to identify the chaperones that mediate the folding or degradation of rod opsin. ER degradation enhancing α-mannosidase-like 1 (EDEM1) can enhance the release of terminally misfolded glycoproteins from the calnexin chaperone system. Here, we identify EDEM1 as a novel chaperone of rod opsin. EDEM1 expression promoted the degradation of P23H rod opsin and decreased its aggregation. By contrast, shRNA-mediated knockdown of EDEM1 increased both the amount of P23H rod opsin and its aggregation into inclusions. EDEM1 was detected in rod photoreceptor inner segments and EndoH-sensitive rod opsin co-immunoprecipitated with EDEM1 from retina, suggesting that rod opsin is a physiological EDEM1 client. Unexpectedly, EDEM1 binding to rod opsin was independent of mannose trimming and EDEM1 promoted the cell-surface expression of mutant rod opsin. Collectively, the data suggest that EDEM1 is a chaperone for rod opsin and that expression of EDEM1 can be used to promote correct folding, as well as enhanced degradation, of mutant proteins in the ER to combat protein-misfolding disease
    corecore