573 research outputs found
Atomi rendszerek elektronsűrűsĂ©gei Ă©s energia funkcionáljai: Hierarchikus megközelĂtĂ©s Ă©s gyakorlati alkalmazások = Electron density and energy functionals of atomic systems: Hierarchical approach and practical applications
Az elektronsűrűsĂ©g a korrelált elektronrendszerek sűrűsĂ©gfunkcionál elmĂ©letĂ©nek (DFT) alapvetĹ‘ mennyisĂ©ge. Megadtuk, hogy a nagy kiterjedĂ©sű, bonyolult elektroneloszlásokat hogyan lehet egyszerű rekurzĂv lĂ©pĂ©sek egymás utáni sorozatakĂ©nt leĂrni. Megmutattuk, hogy a hierarchikus finomĂtást nem kell a tĂ©r minden tartományában elvĂ©gezni, hanem csak a rĂ©szletgazdag helyeken, pl. a magok körĂĽli csĂşcs környĂ©kĂ©n. Az aszimptotikus tartományok, a kĂ©miai kötĂ©sek jĂłl leĂrhatĂłk durva felbontásban is. KiderĂĽlt az az elvi problĂ©ma, hogy az impulzus Ă©s a helyoperátorok tetszĹ‘leges eltolás invariáns rácsreprezentáciĂłja esetĂ©n a kanonikus felcserĂ©lĹ‘dĂ©si reláciĂłk sĂ©rĂĽlnek. AlkalmazáskĂ©nt fĂ©lvezetĹ‘ nanokontaktusok elektronszerkezetĂ©nek lokalizáciĂłját Ă©s fraktál tulajdonságait vizsgáltuk hierarchikus mĂłdszerrel. Az elektron korreláciĂł fogalmát a kvantum informáciĂłelmĂ©let „összefonĂłdás” nĂ©ven emlĂti. Megadtuk a fermion állapotok összefonĂłdottságának mĂ©rtĂ©kĂ©t Neumann- Ă©s RĂ©nyi-entrĂłpiák segĂtsĂ©gĂ©vel. Ennek alsĂł korlátja a hullámfĂĽggvĂ©nyek N-reprezentálhatĂłságának következmĂ©nye. Olyan jelensĂ©geket vizsgáltunk a DFT mĂłdszer alkalmazásával, amelyekben az elektronkorreláciĂł meghatározĂł szerepet játszik. Vizsgáltuk az elektrongáz párkorreláciĂłs fĂĽggvĂ©nyĂ©t, pontszerű töltĂ©sek árnyĂ©kolását, az effektĂv párkölcsönhatást, az elektron Ă©lettartamot, kötött elektronpárok kialakulásának körĂĽlmĂ©nyeit, nehĂ©z ionok fĂ©kezĹ‘dĂ©sĂ©t. Az elektronsűrűsĂ©g analitikus tulajdonságairĂłl is adtunk informáciĂłt. | Electron density is the fundamental quantity of density functional theory (DFT) of correlated electron systems. A method has been given for describing extended, complex electron distributions by a series of simple recursive steps. It is shown that such hierarchic refinement steps are not necessary in all domains of the space, only complex substructures like nuclear cusps require these. Asymptotic regions, chemical bonds are well described at rough resolution levels. It turned out that finite grid methods suffer from the theoretical difficulty of breaking canonical commutation rules, independently of the chosen shift invariant matrix representation of momentum and position operators. As an application we have studied the localization and fractal structure of electron distributions of semiconductor nanocontacts. The concept of electron correlation is known as “entanglement” in quantum information theory. We have given a measure of entanglement of fermion states using Neumann and RĂ©nyi entropies. Its lower limit is a consequence of the N-representability of the wave function. We have investigated various phenomena determined by electron correlation using the DFT method. The pair correlation function of the electron gas, screening of point like particles, effective pair interaction, electron lifetime, formation of bonded electron pairs, and the stopping power for heavy ions was extensively studied. Some analytic properties of the electron density have been determined
Measuring the circularity of congressional districts
Shape analysis has special importance in the detection of manipulated redistricting, which is called
gerrymandering. In most of the US states, this process is made by non-independent actors and often causes
debates about partisan manipulation. The somewhat ambiguous concept of compactness is a standard
criterion for legislative districts. In the literature, circularity is widely used as a measure of compactness,
since it is a natural requirement for a district to be as circular as possible. In this paper, we introduce a
novel and parameter-free circularity measure that is based on Hu moment invariants. This new measure
provides a powerful tool to detect districts with abnormal shapes. We examined some districts of Arkansas,
Iowa, Kansas, and Utah over several consecutive periods and redistricting plans, and also compared the
results with classical circularity indexes. We found that the fall of the average circularity value of the new
measure indicates potential gerrymandering
B-splajn dijelovi koji pristaju na plohe i triangularne mreĹľe
In this paper a technique for the construction of quartic polynomial B-spline patches fitting on analytical surfaces and triangle meshes is presented.The input data are curvature values and principal directions at a given surface point which can be computed directly, if the surface is represented by a vector function. In the case of discrete surface representation, i.e. on a triangle mesh the required input data are computed from a circular neighborhood of a specified triangle face. Such a surface patch may replace a well defined region of the mesh, and can be used e.g. in re-triangulation, mesh-simplification and rendering algorithms.U ovom se radu prikazuje metoda za konstrukciju kvartnog polinoma B-splajn dijela podesnog za analitičke plohe i mreže trokuta. Ulazni podaci su vrijednosti zakrivljenosti i glavni smjerovi u danoj točki plohe, koji se mogu izravno računati za plohu zadanu vektorskom funkcijom. Za slučaj diskretne reprezentacije plohe, tj. za triangularnu mrežu, odgovarajući ulazni podaci računaju se iz kružne okoline određ-enog trokuta mreže. Takvi dijelovi mogu zamijeniti dobro definirano područje mreže, i mogu se upotrijebiti npr. u retriangulaciji, simplifikaciji mreže i renderiranju
SimboliÄŤko spajanje B-splajn krivulja
We present an algorithm for stitching B-spline curves, which is different from the generally used least square method. Our aim is to find a symbolic solution for unifying the control polygons of arcs separately described as 4th degree B-spline curves. We show the effect of interpolation conditions and fairing functions as well.Predstavljamo algoritam za spajanje B-splajn krivulja, koji se razlikuje od općenito upotrebljavane metode najmanjih kvadrata. Naš cilj je naći simboličko rješenje za ujedinjavanje kontrolnih poligona lukova koji se svaki zasebno opisuju kao B-splajn krivulje 4. stupnja. Također pokazujemo utjecaj uvjeta interpolacije i postizanja glatkih funkcija
- …