12 research outputs found

    Satellite-Based Evidence for Shrub and Graminoid Tundra Expansion in Northern Quebec from 1986-2010

    Get PDF
    Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air-photo studies have documented recent changes in high-latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24-year (1986-2010) Landsat time series in a latitudinal transect across the boreal forest-tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last forty years. Using a per-pixel (30 m) trend analysis, 30% of the observable (cloud-free) land area experienced a significant (p < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak-summer conditions. The average NDVI trend (0.007/yr) corresponds to a leaf-area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer (MODIS). Across the entire transect, the area-averaged LAI increase was ~0.2 during 1986-2010. A higher area-averaged LAI change (~0.3) within the shrub-tundra portion of the transect represents a 20-60% relative increase in LAI during the last two decades. Our Landsat-based analysis subdivides the overall high-latitude greening trend into changes in peak-summer greenness by cover type. Different responses within and among shrub, graminoid, and tree-dominated cover types in this study indicate important fine-scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low-biomass vegetation types over multi-decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform

    Next Generation UAS Based Spectral Systems for Environmental Monitoring

    Get PDF
    This presentation provides information on the development of a small Unmanned Aerial System(UAS) with a low power, high performance Intelligent Payload Module (IPM) and a hyperspectral imager to enable intelligent gathering of science grade vegetation data over agricultural fields at about 150 ft. The IPM performs real time data processing over the image data and then enables the navigation system to move the UAS to locations where measurements are optimal for science. This is important because the small UAS typically has about 30 minutes of battery power and therefore over large agricultural fields, resource utilization efficiency is important. The key innovation is the shrinking of the IPM and the cross communication with the navigation software to allow the data processing to interact with desired way points while using Field Programmable Gate Arrays to enable high performance on large data volumes produced by the hyperspectral imager

    Morton et al. reply

    No full text
    REPLYING TO S. R. Saleska et al. Nature 531, 10.1038/nature16457 (2016

    A comparison between multispectral aerial and satellite imagery in precision viticulture

    Get PDF
    In this work we tested consistency and reliability of satellite-derived Prescription Maps (PMs) respect to those that can be obtained by aerial imagery. Test design considered a vineyard of Moscato Reale sited in Apulia (South-Eastern Italy) and two growing seasons (2013 and 2014). Comparisons concerned Landsat 8 OLI images and aerial datasets from airborne RedLake MS4100&nbsp;multispectral camera. We firstly investigated the role of spatial resolution in radiometric features of data and, in particular, of NDVI maps and consequently of vigour maps. We first measured the maximum expected correlation between satellite- and aerial-derived maps. We found that, without any pixel selection and spatial interpolation, correlation ranges between 0.35 and 0.60 depending on the degree of heterogeneity of the vineyard. We also found that this result can be improved by operating a selection of those pixels representing vines canopy in aerial imagery and spatially interpolating them. In this way correlation coefficient can be improved up to 0.85 (minimum 0.60) suggesting an excellent capability of satellite data to approximate aerial ones at vineyard level. Prescription maps derived from vigour one demonstrated to be spatially consistent; but we also found that the quantitative interpretation of mapped vigour was changing in strength according to datasets and time of acquisition. Therefore, in spite of a satisfying consistency of spatial distribution, results showed that vigour strength at vineyard level from aerial and satellite datasets is generally not consistent, partially for the presence of a bias (that we modelled)
    corecore