3,889 research outputs found

    Improved silver-zinc battery-terminal seals

    Get PDF
    Development of battery terminal seal for sealing electrolyte for periods of three to five years is discussed. Operating conditions of battery are defined. Components of electrolyte seal and method of production are reported. Schematic diagrams of device are included

    The Kasteleyn model and a cellular automaton approach to traffic flow

    Full text link
    We propose a bridge between the theory of exactly solvable models and the investigation of traffic flow. By choosing the activities in an apropriate way the dimer configurations of the Kasteleyn model on a hexagonal lattice can be interpreted as space-time trajectories of cars. This then allows for a calculation of the flow-density relationship (fundamental diagram). We further introduce a closely-related cellular automaton model. This model can be viewed as a variant of the Nagel-Schreckenberg model in which the cars do not have a velocity memory. It is also exactly solvable and the fundamental diagram is calculated.Comment: Latex, 13 pages including 3 ps-figure

    Dimers on two-dimensional lattices

    Full text link
    We consider close-packed dimers, or perfect matchings, on two-dimensional regular lattices. We review known results and derive new expressions for the free energy, entropy, and the molecular freedom of dimers for a number of lattices including the simple-quartic (4^4), honeycomb (6^3), triangular (3^6), kagome (3.6.3.6), 3-12 (3.12^2) and its dual [3.12^2], and 4-8 (4.8^2) and its dual Union Jack [4.8^2] Archimedean tilings. The occurrence and nature of phase transitions are also analyzed and discussed.Comment: Typos corrections in Eqs. (28), (32) and (43

    Predictors of Two Kilometer Rowing Ergometer Time Trial Performance

    Get PDF
    Please download pdf version here

    The local electronic structure of alpha-Li3N

    Full text link
    New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.Comment: 34 pages, 7 figures, 1 tabl

    Electron transport properties of sub-3-nm diameter copper nanowires

    Get PDF
    Density functional theory and density functional tight-binding are applied to model electron transport in copper nanowires of approximately 1 nm and 3 nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case, for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results

    Coulomb and Liquid Dimer Models in Three Dimensions

    Full text link
    We study classical hard-core dimer models on three-dimensional lattices using analytical approaches and Monte Carlo simulations. On the bipartite cubic lattice, a local gauge field generalization of the height representation used on the square lattice predicts that the dimers are in a critical Coulomb phase with algebraic, dipolar, correlations, in excellent agreement with our large-scale Monte Carlo simulations. The non-bipartite FCC and Fisher lattices lack such a representation, and we find that these models have both confined and exponentially deconfined but no critical phases. We conjecture that extended critical phases are realized only on bipartite lattices, even in higher dimensions.Comment: 4 pages with corrections and update

    Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths

    Get PDF
    High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source

    Theory of tricriticality for miscut surfaces

    Get PDF
    We propose a theory for the observed tricriticality in the orientational phase diagram of Si(113) misoriented towards [001]. The systems seems to be at or close to a very special point for long range interactions.Comment: Revtex, 1 ps figur

    Flexible Lipid Bilayers in Implicit Solvent

    Full text link
    A minimalist simulation model for lipid bilayers is presented. Each lipid is represented by a flexible chain of beads in implicit solvent. The hydrophobic effect is mimicked through an intermolecular pair potential localized at the ``water''/hydrocarbon tail interface. This potential guarantees realistic interfacial tensions for lipids in a bilayer geometry. Lipids self assemble into bilayer structures that display fluidity and elastic properties consistent with experimental model membrane systems. Varying molecular flexibility allows for tuning of elastic moduli and area/molecule over a range of values seen in experimental systems.Comment: 5 pages, 5 figure
    corecore