93 research outputs found

    Effect of N-chorotaurine on Aspergillus, with particular reference to destruction of secreted gliotoxin

    Get PDF
    The fungistatic and fungicidal activity of N-chlorotaurine (NCT), a long-lived oxidant produced by stimulated neutrophils, was investigated. Physiological concentrations (75â100 µM) of NCT showed clear fungicidal activity against a range of Aspergillus isolates. Moreover, killing by NCT was significantly increased in the presence of ammonium chloride, explained by the formation of monochloramine by halogenation of ammonium. One clinical isolate of Aspergillus fumigatus was characterized for the production of the immunosuppressive agent gliotoxin, and NCT was shown to cause destruction of gliotoxin, possibly via reduction of the disulphide bridge. Because of its endogenous nature and its high antifungal activity, NCT appears to be a good choice for topical treatment of Aspergillus infections, and the results of this study further substantiate its therapeutic efficacy

    Effect of N-chorotaurine on Aspergillus, with particular reference to destruction of secreted gliotoxin

    Get PDF
    The fungistatic and fungicidal activity of N-chlorotaurine (NCT), a long-lived oxidant produced by stimulated neutrophils, was investigated. Physiological concentrations (75â100 µM) of NCT showed clear fungicidal activity against a range of Aspergillus isolates. Moreover, killing by NCT was significantly increased in the presence of ammonium chloride, explained by the formation of monochloramine by halogenation of ammonium. One clinical isolate of Aspergillus fumigatus was characterized for the production of the immunosuppressive agent gliotoxin, and NCT was shown to cause destruction of gliotoxin, possibly via reduction of the disulphide bridge. Because of its endogenous nature and its high antifungal activity, NCT appears to be a good choice for topical treatment of Aspergillus infections, and the results of this study further substantiate its therapeutic efficacy

    Acanthamoeba castellanii : growth on human cell layers reactivates attenuated properties after prolonged axenic culture

    Get PDF
    The free-living, but potentially pathogenic, bacteriovorous amoebae of the genus Acanthamoeba can be easily grown axenically in a laboratory culture. This, however, often leads to considerable losses in virulence, and encystment capacity, and to changes in drug susceptibility. We evaluated potential options for a reactivation of a number of physiological properties, attenuated by prolonged axenic laboratory culture, including encystment potential, protease activity, heat resistance, growth rates and drug susceptibility against N-chlorotaurine (NCT). Toward this end, a strain that had been grown axenically for 10 years was repeatedly passaged on human HEp-2 cell monolayers or treated with 5′-azacytidine (AzaC), a methyltransferase inhibitor, and trichostatin A (TSA), a histone deacetylase inhibitor, in order to uplift epigenetic gene regulation. Culture on human cell monolayers resulted in significantly enhanced encystment potentials and protease activities, and higher susceptibility against NCT, whereas the resistance against heat shock was not altered. Treatment with AzaC/TSA resulted in increased encystment rates and protease activities, indicating the participation of epigenetic mechanisms. However, lowered resistances against heat shock indicate that possible stress responses to AzaC/TSA have to be taken into account. Repeated growth on human cell monolayers appears to be a potential method to reactivate attenuated characteristics in Acanthamoeba

    Exposure to n-chlorotaurine induces oxidative stress responses in aspergillus fumigatus

    Get PDF
    Purpose. The neutrophil-derived oxidant N-chlorotaurine (NCT) displays remarkable in vivo tolerability and efficacy against a range of pathogens. The aim of this study was to characterize the response of the pulmonary pathogen Aspergillus fumigatus to NCT. Methodology. The effect of NCT on the growth and viability of A. fumigatus was characterized. NCT-induced alteration of amino acids and gliotoxin from A. fumigatus mycelium was assessed. Label-free shotgun quantitative proteomic analysis was performed on A. fumigatus exposed to NCT for 24 h. Results. Incubation of A. fumigatus with NCT at concentrations ranging from 6.8 to 55 mM decreased conidial growth and viability, and mycelium biomass relative to the controls. Exposure to NCT (13.77 mM) resulted in increased amino acids and gliotoxin levels from A. fumigatus mycelium. Exposure of A. fumigatus mycelium to NCT (6.8 mM) revealed an enrichment in proteins associated with the ribosome, transcription and translation and non-ribosomal peptide biosynthesis (e.g. Pes1, Pes3), which play an essential role in oxidative stress resistance in A. fumigatus. A decrease in the abundance of proteins associated with fumagillin and pseurotin biosynthesis highlighted the anti-virulence activity of NCT. Conclusion. These results indicate that NCT induces an oxidative stress response in A. fumigatus as evidenced by alterations in the proteome and inhibits conidial and mycelial growth. Clinical investigations of topical application of NCT to treat Aspergillus infections are encouraged

    The emergence of a self-catalysing structure in abstract origin-of-life models

    Get PDF
    We formalize a class of abstract and simple biochemical models that have been proposed for understanding the origin of life. We then analyse conditions under which 'life-like' substructures will tend to arise in such models

    Bactericidal Activity of N-Chlorotaurine against Biofilm-Forming Bacteria Grown on Metal Disks

    Get PDF
    Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies

    Tolerability of inhaled N-chlorotaurine in an acute pig streptococcal lower airway inflammation model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of N-chlorotaurine (NCT), an endogenous new broad spectrum non-antibiotic anti-infective, has been shown to be very well tolerated in the pig model recently. In the present study, inhaled NCT was tested for tolerability and efficacy in the infected bronchopulmonary system using the same model.</p> <p>Methods</p> <p>Anesthetized pigs were inoculated with 20 ml of a solution containing approximately 10<sup>8 </sup>CFU/ml <it>Streptococcus pyogenes </it>strain d68 via a duodenal tube placed through the tracheal tube down to the carina. Two hours later, 5 ml of 1% NCT aqueous solution (test group, n = 15) or 5 ml of 0.9% NaCl (control group, n = 16) was inhaled via the tracheal tube connected to a nebulizer. Inhalation was repeated every hour, four times in total. Lung function and haemodynamics were monitored. Bronchoalveolar lavage samples were removed for determination of colony forming units (CFU), and lung samples for histology.</p> <p>Results</p> <p>Arterial pressure of oxygen (PaO<sub>2</sub>) decreased rapidly after instillation of the bacteria in all animals and showed only a slight further decrease at the end of the experiment without a difference between both groups. Pulmonary artery pressure increased to a peak 1-1.5 h after application of the bacteria, decreased in the following hour and remained constant during treatment, again similarly in both groups. Histology demonstrated granulocytic infiltration in the central parts of the lung, while this was absent in the periphery. Expression of TNF-alpha, IL-8, and haemoxygenase-1 in lung biopsies was similar in both groups. CFU counts in bronchoalveolar lavage came to 170 (10; 1388) CFU/ml (median and 25 and 75 percentiles) for the NCT treated pigs, and to 250 (10; 5.5 × 10<sup>5</sup>) CFU/ml for NaCl treated pigs (p = 0.4159).</p> <p>Conclusions</p> <p>Inhaled NCT at a concentration of 1% proved to be very well tolerated also in the infected bronchopulmonary system. This study confirms the tolerability in this delicate body region, which has been proven in healthy pigs previously. Regarding efficacy, no conclusions can be drawn, mainly because of the limited test period of the model.</p
    corecore