12 research outputs found

    Design And Implementation Of Low Passband Ripple Digital Down Converter Filter For Software Defined Radio Transceiver

    Get PDF
    The main aim of this research is the design and implementation of the Digital Down Converter (DDC) filter with low passband ripple and high attenuation in the adjacent rejection and blocker requirements in the filter response for Software Defined Radio (SDR) transceiver to decrease the power consumption and avoid the interference in the channel. The proposed DDC filters incorporate of Remez algorithm and Mini-max algorithm to reduce the error rate in the filter response. The DDC filter is acombination of 5-stages Cascaded Integrated Comb (CIC) filter and two linear phase Equiripple FIR filter (CFIR and PFIR). The passband ripple, adjacent rejection and blocker band is developed by controlling the transition width, filter order and weight function of the FIR filter using MATLAB and Xilinx System Generator environment

    High Level Implementation Methodologies of DSP Module using FPGA and System Generator

    Get PDF
    This paper presents the high level implementation methodologies of Digital Signal Processing (DSP) module by using the Field Programmable Gate Array (FPGA) andintegrated software environments (ISE) with the System Generator programs. The shortest and efficient paths to design a Xilinx Vertix-4 FPGA using MATLAB, ModelSim, synplify Pro software tools is introduced. The floating point design in MATLAB has been moved to fixed point values using Xilinx DSP system generator software a model based approach associated with assistance software from Mathworks and Synplicity. The obtained result shows an important utilization in FPGAarea

    MPPT for Photovoltaic System Using Nonlinear Controller

    No full text
    Photovoltaic (PV) system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP), which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O) and fuzzy logic-based controller (FLBC) under abrupt changes in environmental conditions

    Low Noise Wireless Modem for Patient ECG Signal Transfer Based SDR Technology and FSE Algorithms

    Full text link
    Volume 2 Issue 3 (March 2014

    LCC-S Based Discrete Fast Terminal Sliding Mode Controller for Efficient Charging through Wireless Power Transfer

    No full text
    Compared to the plug-in charging system, Wireless power transfer (WPT) is simpler, reliable, and user-friendly. Resonant inductive coupling based WPT is the technology that promises to replace the plug-in charging system. It is desired that the WPT system should provide regulated current and power with high efficiency. Due to the instability in the connected load, the system output current, power, and efficiency vary. To solve this issue, a buck converter is implemented on the secondary side of the WPT system, which adjusts its internal resistance by altering its duty cycle. To control the duty cycle of the buck converter, a discrete fast terminal sliding mode controller is proposed to regulate the system output current and power with optimal efficiency. The proposed WPT system uses the LCC-S compensation topology to ensure a constant output voltage at the input of the buck converter. The LCC-S topology is analyzed using the two-port network theory, and governing equations are derived to achieve the maximum efficiency point. Based on the analysis, the proposed controller is used to track the maximum efficiency point by tracking an optimal power point. An ultra-capacitor is connected as the system load, and based on its charging characteristics, an optimal charging strategy is devised. The performance of the proposed system is tested under the MATLAB/Simulink platform. Comparison with the conventionally used PID and sliding mode controller under sudden variations in the connected load is presented and discussed. An experimental prototype is built to validate the effectiveness of the proposed controller
    corecore