217 research outputs found

    Effect of ligand methylation on the spin-switching properties of surface-supported spin-crossover molecules

    Get PDF
    X-ray absorption spectroscopy investigations of the spin-state switching of spin-crossover (SCO) complexes adsorbed on a highly-oriented pyrolytic graphite (HOPG) surface have shown so far that HOPG is a promising candidate to realize applications such as spintronic devices because of the stability of SCO complexes on HOPG and the possibility of highly efficient thermal and light-induced spin-state switching. Herein, we present the spin switching of several Fe(II) SCO complexes adsorbed on an HOPG surface with particular emphasis on the thermally induced spin transition behaviour with respect to different structural modifications. The complexes of the type [Fe(bpz)2(L)] (bpz  =  dihydrobis(pyrazolyl)borate, L  =  1,10-phenanthroline, 2,2'-bipyridine) and their methylated derivatives exhibit SCO in the solid state with some differences regarding cooperative effects. However, in the vacuum-deposited thick films on quartz, complete and more gradual spin transition behavior is observable via UV/vis spectroscopy. In contrast to that, all complexes show large differences upon direct contact with HOPG. Whereas the unmodified complexes show thermal and light-induced SCO, the addition of e.g. two or four methyl groups leads to a partial or a complete loss of the SCO on the surface. The angle-dependent measurement of the N K-edge compared to calculations indicates that the complete SCO and HS-locked molecules on the surface exhibit a similar preferential orientation, whereas complexes undergoing an incomplete SCO exhibit a random orientation on the surface. These results are discussed in the light of molecule-substrate interactions

    Disruption in murine Eml1 perturbs retinal lamination during early development.

    Get PDF
    During mammalian development, establishing functional neural networks in stratified tissues of the mammalian central nervous system depends upon the proper migration and positioning of neurons, a process known as lamination. In particular, the pseudostratified neuroepithelia of the retina and cerebrocortical ventricular zones provide a platform for progenitor cell proliferation and migration. Lamination defects in these tissues lead to mispositioned neurons, disrupted neuronal connections, and abnormal function. The molecular mechanisms necessary for proper lamination in these tissues are incompletely understood. Here, we identified a nonsense mutation in the Eml1 gene in a novel murine model, tvrm360, displaying subcortical heterotopia, hydrocephalus and disorganization of retinal architecture. In the retina, Eml1 disruption caused abnormal positioning of photoreceptor cell nuclei early in development. Upon maturation, these ectopic photoreceptors possessed cilia and formed synapses but failed to produce robust outer segments, implying a late defect in photoreceptor differentiation secondary to mislocalization. In addition, abnormal positioning of Müller cell bodies and bipolar cells was evident throughout the inner neuroblastic layer. Basal displacement of mitotic nuclei in the retinal neuroepithelium was observed in tvrm360 mice at postnatal day 0. The abnormal positioning of retinal progenitor cells at birth and ectopic presence of photoreceptors and secondary neurons upon maturation suggest that EML1 functions early in eye development and is crucial for proper retinal lamination during cellular proliferation and development

    Searching QTL by gene expression: analysis of diabesity

    Get PDF
    BACKGROUND: Recent developments in sequence databases provide the opportunity to relate the expression pattern of genes to their genomic position, thus creating a transcriptome map. Quantitative trait loci (QTL) are phenotypically-defined chromosomal regions that contribute to allelically variant biological traits, and by overlaying QTL on the transcriptome, the search for candidate genes becomes extremely focused. RESULTS: We used our novel data mining tool, ExQuest, to select genes within known diabesity QTL showing enriched expression in primary diabesity affected tissues. We then quantified transcripts in adipose, pancreas, and liver tissue from Tally Ho mice, a multigenic model for Type II diabetes (T2D), and from diabesity-resistant C57BL/6J controls. Analysis of the resulting quantitative PCR data using the Global Pattern Recognition analytical algorithm identified a number of genes whose expression is altered, and thus are novel candidates for diabesity QTL and/or pathways associated with diabesity. CONCLUSION: Transcription-based data mining of genes in QTL-limited intervals followed by efficient quantitative PCR methods is an effective strategy for identifying genes that may contribute to complex pathophysiological processes

    physicochemical properties in the crystalline bulk and in thin films deposited from the gas phase

    Get PDF
    Four analogues of the spin-crossover complex [Fe(H2Bpz2)2(phen)] (H2Bpz2 = dihydrobis(pyrazolyl)borate; 2) containing functionalized 1,10-phenanthroline (phen) ligands have been prepared; i.e., [Fe(H2Bpz2)2(L)], L = 4-methyl-1,10-phenanthroline (3), 5-chloro-1,10-phenanthroline (4), 4,7-dichloro-1,10-phenanthroline (5), and 4,7-dimethyl-1,10-phenanthroline (6). The systems are investigated by magnetic susceptibility measurements and a range of spectroscopies in the solid state and in thin films obtained by physical vapour deposition (PVD). Thermal as well as light-induced SCO behaviour is observed for 3–6 in the films. By contrast, thermal SCO in the solid state occurs only for 3 and 4 but is absent for 5 and 6. These findings are discussed in the light of cooperative and intermolecular interactions

    The Alström Syndrome Protein, ALMS1, Interacts with α-Actinin and Components of the Endosome Recycling Pathway

    Get PDF
    Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS

    Degeneration and Plasticity of the Optic Pathway in Alström Syndrome.

    Get PDF
    BACKGROUND AND PURPOSE: Alstrom syndrome is a rare inherited ciliopathy in which early progressive cone-rod dystrophy leads to childhood blindness. We investigated functional and structural changes of the optic pathway in Alstrom syndrome by using MR imaging to provide insight into the underlying pathogenic mechanisms. MATERIALS AND METHODS: Eleven patients with genetically proved Alstrom syndrome (mean age, 23 years; range, 6–45 years; 5 females) and 19 age- and sex-matched controls underwent brain MR imaging. The study protocol included conventional sequences, resting-state functional MR imaging, and diffusion tensor imaging. RESULTS: In patients with Alstrom syndrome, the evaluation of the occipital regions showed the following: 1) diffuse white matter volume decrease while gray matter volume decrease spared the occipital poles (voxel-based morphometry), 2) diffuse fractional anisotropy decrease and radial diffusivity increase while mean and axial diffusivities were normal (tract-based spatial statistics), and 3) reduced connectivity in the medial visual network strikingly sparing the occipital poles (independent component analysis). After we placed seeds in both occipital poles, the seed-based analysis revealed significantly increased connectivity in patients with Alstrom syndrome toward the left frontal operculum, inferior and middle frontal gyri, and the medial portion of both thalami (left seed) and toward the anterior portion of the left insula (right and left seeds). CONCLUSIONS: The protean occipital brain changes in patients with Alstrom syndrome likely reflect the coexistence of diffuse primary myelin derangement, anterograde trans-synaptic degeneration, and complex cortical reorganization affecting the anterior and posterior visual cortex to different degrees

    The endothelial-specific regulatory mutation, Mvwf1, is a common mouse founder allele

    Get PDF
    Mvwf1 is a cis-regulatory mutation previously identified in the RIIIS/J mouse strain that causes a unique tissue-specific switch in the expression of an N-acetylgalactosaminyltransferase, B4GALNT2, from intestinal epithelium to vascular endothelium. Vascular B4galnt2 expression results in aberrant glycosylation of von Willebrand Factor (VWF) and accelerated VWF clearance from plasma. We now report that 13 inbred mouse strains share the Mvwf1 tissue-specific switch and low VWF phenotype, including five wild-derived strains. Genomic sequencing identified a highly conserved 97-kb Mvwf1 haplotype block shared by these strains that encompasses a 30-kb region of high nucleotide sequence divergence from C57BL6/J flanking B4galnt2 exon 1. The analysis of a series of bacterial artificial chromosome (BAC) transgenes containing B4galnt2 derived from the RIIIS/J or C57BL6/J inbred mouse strains demonstrates that the corresponding sequences are sufficient to confer the vessel (RIIIS/J) or intestine (C57BL6/J)-specific expression patterns. Taken together, our data suggest that the region responsible for the Mvwf1 regulatory switch lies within an approximately 30-kb genomic interval upstream of the B4galnt2 gene. The observation that Mvwf1 is present in multiple wild-derived strains suggests that this locus may be retained in wild mouse populations due to positive selection. Similar selective pressures could contribute to the high prevalence of von Willebrand disease in humans
    corecore