109 research outputs found
Unlocking Pharmacological and Therapeutic Potential of Hyacinth Bean (<em>Lablab purpureus</em> L.): Role of OMICS Based Biology, Biotic and Abiotic Elicitors
Hyacinth bean also known as Indian bean is multipurpose legume crops consumed both as food by humans and as forage by animals. Being a rich source of protein, it also produces distinct secondary metabolites such as flavonoids, phenols and tyrosinase which not only help strengthened plant’s own innate immunity against abiotic/biotrophic attackers but also play important therapeutic role in the treatment of various chronic diseases. However, despite its immense therapeutic and nutritional attributes in strengthening food, nutrition and therapeutic security in many developing countries, it is still considered as an “orphan crop” for unravelling its genetic potential and underlying molecular mechanisms for enhancing secondary metabolite production. Several lines of literatures have well documented the use of OMICS based techniques and biotic and abiotic elicitors for stimulating secondary metabolite production particularly in model as well as in few economically important crops. However, only limited reports have described their application for stimulating secondary metabolite production in underutilised crops. Therefore, the present chapter will decipher different dimensions of multi-omics tools and their integration with other conventional techniques (biotic and abiotic elicitors) for unlocking hidden genetic potential of hyacinth bean for elevating the production of secondary metabolites having pharmaceutical and therapeutic application. Additionally, the study will also provide valuable insights about how these advance OMICS tools can be successfully exploited for accelerating functional genomics and breeding research for unravelling their hidden pharmaceutical and therapeutic potential thereby ensuring food and therapeutic security for the betterment of mankind
Nutritional and antioxidant properties and their inter-relationship with pod characters in an under-exploited vegetable, Indian bean (Lablab purpureus)
Indian bean [Lablab purpureus (L.) Sweet] is an underexploited nutritious legume vegetable found in tropical regions of Asia and Africa. The nutritional and anti-oxidant properties of 21 pole type Indian bean genotypes were analysed in edible pods in terms of protein, sugar, chlorophyll, carotenoids, phenol, and proline contents. The analyses revealed a significant genotypic variation in the level of protein (102-635.6 mg), sugar (0.188-1.11 mg), chlorophyll (0.121-0.716 mg), phenol (1.7-9.67 mg), proline (0.02-7.06 µg) and carotenoids (0.04-0.231 mg). Estimation of genetic variability parameters revealed that chlorophyll a and non-reducing sugar had high estimates of PCV than GCV, whereas, protein, phenol, chlorophyll b, carotenoid, reducing sugar and non-reducing sugar had moderately high PCV than GCV indicating that such variability could be exploited for successful identification of genotypes for the specific biochemical property. In general, heritability estimates were recorded to be high for all the characters studied except chlorophyll a and reducing sugar. High heritability coupled with high genetic advance as percentage of mean was observed for proline, non-reducing sugar, chlorophyll a, carotenoidd, protein and phenol. Since such traits are controlled by additive genes, more importance need to be given to these traits while selecting the breeding lines rich in nutritional qualities
Myeloid Cells in Multiple Sclerosis
In steady state, the central nervous system (CNS) houses a variety of myeloid cells, such as microglia, non-parenchymal macrophages and dendritic cells (DCs), and granulocytes. Most of these cells enter the CNS during embryogenesis and are crucial for proper CNS development. In adulthood, these resident myeloid cells exert crucial homeostatic functions. In neuroinflammatory conditions, like multiple sclerosis (MS), both lymphoid and myeloid cells from the periphery infiltrate the tissue and cause local damage. Although lymphocytes are undeniably important players in MS, CNS-resident and CNS-infiltrating myeloid cells have recently gained much-deserved attention for their roles in disease progression. Here, we will review significant advances made in recent years delineating myeloid cell functions within the CNS both in homeostasis and MS. We will also discuss how these cells are affected by currently employed therapeutics for MS patients
Treatment Preferences for Pharmacological versus Psychological Interventions among Primary Care Providers in Nepal: Mixed Methods Analysis of a Pilot Cluster Randomized Controlled Trial.
There is increasing evidence supporting the effectiveness of psychological interventions in low- and middle-income countries. However, primary care providers (PCPs) may prefer treating patients with medication. A secondary exploratory analysis of a pilot cluster randomized controlled trial was conducted to evaluate psychological vs. pharmacological treatment preferences among PCPs. Thirty-four health facilities, including 205 PCPs, participated in the study, with PCPs in 17 facilities assigned to a standard version of the mental health Gap Action Programme (mhGAP) training delivered by mental health specialists. PCPs in the other 17 facilities received mhGAP instruction delivered by specialists and people with lived experience of mental illness (PWLE), using a training strategy entitled Reducing Stigma among HealthcAre ProvidErs (RESHAPE). Pre- and post- intervention attitudes were measured through quantitative and qualitative tools. Qualitative interviews with 49 participants revealed that PCPs in both arms endorsed counseling\u27s benefits and collaboration within the health system to provide counseling. In the RESHAPE arm, PCPs were more likely to increase endorsement of statements such as depression improves without medication
Gesture Recognition for Enhancing Human Computer Interaction
Gesture recognition is critical in human-computer communication. As observed, a plethora of current technological developments are in the works, including biometric authentication, which we see all the time in our smartphones. Hand gesture focus, a frequent human-computer interface in which we manage our devices by presenting our hands in front of a webcam, can benefit people of different backgrounds. Some of the efforts in human-computer interface include voice assistance and virtual mouse implementation with voice commands, fingertip recognition and hand motion tracking based on an image in a live video. Human Computer Interaction (HCI), particularly vision-based gesture and object recognition, is becoming increasingly important. Hence, we focused to design and develop a system for monitoring fingers using extreme learning-based hand gesture recognition techniques. Extreme learning helps in quickly interpreting the hand gestures with improved accuracy which would be a highly useful in the domains like healthcare, financial transactions and global busines
Metabolomics-Driven Mining of Metabolite Resources:Applications and Prospects for Improving Vegetable Crops
Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants
Chronic Lymphocytic Leukemia Cells in a Lymph Node Microenvironment Depict Molecular Signature Associated with an Aggressive Disease
Chronic lymphocytic leukemia (CLL) cells survive longer in vivo than in vitro, suggesting that the tissue microenvironment provides prosurvival signals to tumor cells. Primary and secondary lymphoid tissues are involved in the pathogenesis of CLL, and the role of these tissue microenvironments has not been explored completely. To elucidate host-tumor interactions, we performed gene expression profiling (GEP) of purified CLL cells from peripheral blood (PB; n = 20), bone marrow (BM; n = 18), and lymph node (LN; n = 15) and validated key pathway genes by real-time polymerase chain reaction, immunohistochemistry and/or TCL1 trans-genic mice. Gene signatures representing several pathways critical for survival and activation of B cells were altered in CLL cells from different tissue compartments. Molecules associated with the B-cell receptor (BCR), B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL), nuclear factor (NF)-ÎşB pathway and immune suppression signature were enriched in LN-CLL, suggesting LNs as the primary site for tumor growth. Immune suppression genes may help LN-CLL cells to modulate antigen-presenting and T-cell behavior to suppress antitumor activity. PB CLL cells overexpressed chemokine receptors, and their cognate ligands were enriched in LN and BM, suggesting that a chemokine gradient instructs B cells to migrate toward LN or BM. Of several chemokine ligands, the expression of CCL3 was associated with poor prognostic factors. The BM gene signature was enriched with antiapoptotic, cytoskeleton and adhesion molecules. Interestingly, PB cells from lymphadenopathy patients shared GEP with LN cells. In EÎĽ-TCL1 transgenic mice (the mouse model of the disease), a high percentage of leukemic cells from the lymphoid compartment express key BCR and NF-ÎşB molecules. Together, our findings demonstrate that the lymphoid microenvironment promotes survival, proliferation and progression of CLL cells via chronic activation of BCR, BAFF/APRIL and NF-ÎşB activation while suppressing the immune response
The effect of long term combined yoga practice on the basal metabolic rate of healthy adults
BACKGROUND: Different procedures practiced in yoga have stimulatory or inhibitory effects on the basal metabolic rate when studied acutely. In daily life however, these procedures are usually practiced in combination. The purpose of the present study was to investigate the net change in the basal metabolic rate (BMR) of individuals actively engaging in a combination of yoga practices (asana or yogic postures, meditation and pranayama or breathing exercises) for a minimum period of six months, at a residential yoga education and research center at Bangalore. METHODS: The measured BMR of individuals practicing yoga through a combination of practices was compared with that of control subjects who did not practice yoga but led similar lifestyles. RESULTS: The BMR of the yoga practitioners was significantly lower than that of the non-yoga group, and was lower by about 13 % when adjusted for body weight (P < 0.001). This difference persisted when the groups were stratified by gender; however, the difference in BMR adjusted for body weight was greater in women than men (about 8 and 18% respectively). In addition, the mean BMR of the yoga group was significantly lower than their predicted values, while the mean BMR of non-yoga group was comparable with their predicted values derived from 1985 WHO/FAO/UNU predictive equations. CONCLUSION: This study shows that there is a significantly reduced BMR, probably linked to reduced arousal, with the long term practice of yoga using a combination of stimulatory and inhibitory yogic practices
Heterologous Expression of Serine Hydroxymethyltransferase-3 From Rice Confers Tolerance to Salinity Stress in E. coli and Arabidopsis
Among abiotic stresses, salt stress adversely affects growth and development in rice. Contrasting salt tolerant (CSR27), and salt sensitive (MI48) rice varieties provided information on an array of genes that may contribute for salt tolerance of rice. Earlier studies on transcriptome and proteome profiling led to the identification of salt stress-induced serine hydroxymethyltransferase-3 (SHMT3) gene. In the present study, the SHMT3 gene was isolated from salt-tolerant (CSR27) rice. OsSHMT3 exhibited salinity-stress induced accentuated and differential expression levels in different tissues of rice. OsSHMT3 was overexpressed in Escherichia coli and assayed for enzymatic activity and modeling protein structure. Further, Arabidopsis transgenic plants overexpressing OsSHMT3 exhibited tolerance toward salt stress. Comparative analyses of OsSHMT3 vis a vis wild type by ionomic, transcriptomic, and metabolic profiling, protein expression and analysis of various traits revealed a pivotal role of OsSHMT3 in conferring tolerance toward salt stress. The gene can further be used in developing gene-based markers for salt stress to be employed in marker assisted breeding programs.HIGHLIGHTS- The study provides information on mechanistic details of serine hydroxymethyl transferase gene for its salt tolerance in rice
- …