28 research outputs found

    Neutrinos from type Ia supernovae: the deflagration-to-detonation transition scenario

    Full text link
    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear - type Ia - supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption of a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ∼10\sim 10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ∼10\sim 10 kpc. At 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.Comment: 44 pages, 29 figures & 2 tables. Updated to match Phys. Rev. D version, including a new event channel discussion and improved IceCube result

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections

    Get PDF
    We describe the survey design, calibration, commissioning, and emission-line detection algorithms for the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the redshifts of over a million Lyα emitting galaxies between 1.88 < z < 3.52, in a 540 deg2 area encompassing a comoving volume of 10.9 Gpc3. No preselection of targets is involved; instead the HETDEX measurements are accomplished via a spectroscopic survey using a suite of wide-field integral field units distributed over the focal plane of the telescope. This survey measures the Hubble expansion parameter and angular diameter distance, with a final expected accuracy of better than 1%. We detail the project’s observational strategy, reduction pipeline, source detection, and catalog generation, and present initial results for science verification in the Cosmological Evolution Survey, Extended Groth Strip, and Great Observatories Origins Deep Survey North fields. We demonstrate that our data reach the required specifications in throughput, astrometric accuracy, flux limit, and object detection, with the end products being a catalog of emission-line sources, their object classifications, and flux-calibrated spectra

    The Hα and [O iii] λ5007 Luminosity Functions of 1.2 < z < 1.9 Emission-line Galaxies from Hubble Space Telescope (HST) Grism Spectroscopy

    No full text
    Euclid and the Roman Space Telescope (Roman) will soon use grism spectroscopy to detect millions of galaxies via their H α and [O iii ] λ 5007 emission. To better constrain the expected galaxy counts from these instruments, we use a vetted sample of 4239 emission-line galaxies from the 3D Hubble Space Telescope survey to measure the H α and [O iii ] λ 5007 luminosity functions between 1.16 < z < 1.90; this sample is ∼4 times larger than previous studies at this redshift. We find very good agreement with previous measurements for H α , but for [O iii ], we predict a higher number of intermediate-luminosity galaxies than from previous works. We find that, for both lines, the characteristic luminosity, L∗{{ \mathcal L }}_{* } , increases monotonically with redshift, and use the H α luminosity function to calculate the epoch’s cosmic star formation rate density. We find that H α -visible galaxies account for ∼81% of the epoch’s total star formation rate, and this value changes very little over the 1.16 < z < 1.56 redshift range. Finally, we derive the surface density of galaxies as a function of limiting flux and find that previous predictions for galaxy counts for the Euclid Wide Survey are unchanged, but there may be more [O iii ] galaxies in the Roman High Latitude Survey than previously estimated

    Analysis of human blood plasma proteome from ten healthy volunteers from Indian population.

    Get PDF
    Analysis of any mammalian plasma proteome is a challenge, particularly by mass spectrometry, due to the presence of albumin and other abundant proteins which can mask the detection of low abundant proteins. As detection of human plasma proteins is valuable in diagnostics, exploring various workflows with minimal fractionation prior to mass spectral analysis, is required in order to study population diversity involving analysis in a large cohort of samples. Here, we used 'reference plasma sample', a pool of plasma from 10 healthy individuals from Indian population in the age group of 25-60 yrs including 5 males and 5 females. The 14 abundant proteins were immunodepleted from plasma and then evaluated by three different workflows for proteome analysis using a nanoflow reverse phase liquid chromatography system coupled to a LTQ Orbitrap Velos mass spectrometer. The analysis of reference plasma sample a) without prefractionation, b) after prefractionation at peptide level by strong cation exchange chromatography and c) after prefractionation at protein level by sodium dodecyl sulfate polyacrylamide gel electrophoresis, led to the identification of 194, 251 and 342 proteins respectively. Together, a comprehensive dataset of 517 unique proteins was achieved from all the three workflows, including 271 proteins with high confidence identified by ≥ 2 unique peptides in any of the workflows or identified by single peptide in any of the two workflows. A total of 70 proteins were common in all the three workflows. Some of the proteins were unique to our study and could be specific to Indian population. The high-confidence dataset obtained from our study may be useful for studying the population diversity, in discovery and validation process for biomarker identification

    Plasma proteins identified with high confidence in all the three workflows.

    No full text
    a<p>The symbols+and–indicate presence and absence of a protein when compared our dataset with the dataset by Schenk <i>et al</i>. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072584#pone.0072584-Schenk1" target="_blank">[10]</a> and Anderson <i>et al.</i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072584#pone.0072584-Anderson3" target="_blank">[8]</a> study.</p
    corecore