18 research outputs found

    Prediction Models for BMI and NAFLD

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. Disulfide bond‐forming oxidoreductase A‐like protein (DsbA‐L) is known to be a key molecule in protection against obesity and obesity‐induced inflammation. In the present study, we used a modeling and simulation approach in an attempt to develop body mass index (BMI) and BMI‐based NAFLD prediction models incorporating the DsbA‐L polymorphism to predict the BMI and NAFLD in 341 elderly subjects. A nonlinear mixed‐effect model best represented the sigmoidal relationship between the BMI and the logit function of the probability of NAFLD prevalence. The final models for BMI and NAFLD showed that DsbA‐L rs1917760 polymorphism, age, and gender were associated with the BMI, whereas gender, patatin‐like phospholipase 3 rs738409 polymorphism, HbA1c, and high‐density and low‐density lipoprotein cholesterol levels were associated with the risk of NAFLD. This information may aid in the genetic‐based prevention of obesity and NAFLD in the general elderly population

    Independent association of HLA-DPB1*02:01 with rheumatoid arthritis in Japanese populations

    Get PDF
    ObjectiveRheumatoid arthritis (RA) is a chronic autoimmune disease characterized with joint destructions; environmental and genetic factors were thought to be involved in the etiology of RA. The production of anti-citrullinated peptide antibodies (ACPA) is specifically associated with RA. DRB1 is associated with the susceptibility of RA, especially ACPA-positive RA [ACPA(+)RA]. However, a few studies reported on the independent associations of DPB1 alleles with RA susceptibility. Thus, we investigated the independent association of DPB1 alleles with RA in Japanese populations.MethodsAssociation analyses of DPB1 were conducted by logistic regression analysis in 1667 RA patients and 413 controls.ResultsIn unconditioned analysis, DPB1*04:02 was nominally associated with the susceptibility of ACPA(+)RA (P = 0.0021, corrected P (Pc) = 0.0275, odds ratio [OR] 1.52, 95% confidence interval [CI] 1.16–1.99). A significant association of DPB1*02:01 with the susceptibility of ACPA(+)RA was observed, when conditioned on DRB1 (Padjusted = 0.0003, Pcadjusted = 0.0040, ORadjusted 1.47, 95%CI 1.19–1.81). DPB1*05:01 was tended to be associated with the protection against ACPA(+)RA, when conditioned on DRB1 (Padjusted = 0.0091, Pcadjusted = 0.1184, ORadjusted 0.78, 95%CI 0.65–0.94). When conditioned on DRB1, the association of DPB1*04:02 with ACPA(+)RA was disappeared. No association of DPB1 alleles with ACPA-negative RA was detected.ConclusionThe independent association of DPB1*02:01 with Japanese ACPA(+)RA was identified

    Effect of pH and hydration on the normal and lateral interaction forces between alumina surfaces

    Get PDF
    Interaction forces between alumina surfaces were measured using an AFM-colloid probe method at different pHs. For an α-alumina-sapphire system at acidic pH, the force curve exhibited a well-defined repulsive barrier and an attractive minimum. At basic pH, the interactive force was repulsive at all separations with no primary minimum. Lateral force measurements under the same conditions showed that frictional forces were nearly an order of magnitude smaller at basic pH than those observed at acidic pH. This behavior was attributed to the hydration of the alumina surface. Normal and lateral force measurements with the strongly hydrated ρ-alumina surfaces supported these findings

    Genetic Background of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy: Time to Start Asian Registry!

    Full text link
    AbstractArrhythmogenic right venticular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy with a very low penetrance affecting the right ventricle (RV) and presenting palpitation and syncope due to ventricular tachycardia (VT) originating from RV. The VT can degenerate into ventricular fibrillation and sudden cardiac death. The genetic background of ARVD/C has recently been found to be heterogeneous, mainly resulting from cell adhesion abnormalities due to mutations in five different genes encoding members of the desmosome complex. In Asian countries, however, the genetic aspect of the disease has not been fully studied, although the clinical features of Asian ARVD/C patients are different from those in Western countries in the penetrance of phenotypes, relation to Brugada syndrome and link to RV outflow tract ventricular tachycardia. It is of urgent need to have a registry of Asian ARVD/C patients and to conduct a more detailed genetic survey on the candidate genes, including desomosomal ones

    Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation

    No full text
    Transcriptional and epigenetic regulation is fundamentally involved in initiating and maintaining progression of cellular differentiation. The 2 types of thermogenic adipocytes, brown and beige, are thought to be of different origins but share functionally similar phenotypes. Here, we report that lysine-specific demethylase 2 (LSD2) regulates the expression of genes associated with lineage identity during the differentiation of brown and beige adipogenic progenitors in mice. In HB2 mouse brown preadipocytes, short hairpin RNA-mediated knockdown (KD) of LSD2 impaired formation of lipid droplet-containing adipocytes and down-regulated brown adipogenesis-associated genes. Transcriptomic analysis revealed that myogenesis-associated genes were up-regulated in LSD2-KD cells under adipogenic induction. In addition, loss of LSD2 during later phases of differentiation had no obvious influence on adipogenic traits, suggesting that LSD2 functions during earlier phases of brown adipocyte differentiation. Using adipogenic cells from the brown adipose tissues of LSD2-knockout (KO) mice, we found reduced expression of brown adipogenesis genes, whereas myogenesis genes were not affected. In contrast, when LSD2-KO cells from inguinal white adipose tissues were subjected to beige induction, these cells showed a dramatic rise in myogenic gene expression. Collectively, these results suggest that LSD2 regulates distinct sets of genes during brown and beige adipocyte formation.-Takase, R., Hino, S., Nagaoka, K., Anan, K., Kohrogi, K., Araki, H., Hino, Y., Sakamoto, A., Nicholson, T. B., Chen, T., Nakao, M. Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation

    Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma

    No full text
    Background and aims: Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate ÎČ-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. Methods: We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. Results: Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. Conclusions: These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy
    corecore