7,245 research outputs found
Research Article Titles and Disciplinary Conventions: A Corpus Study of Eight Disciplines
Research articles are clearly influenced by the discipline of the research being reported. Just as disciplinary conventions place constraints on, for example, the moves and language use of abstracts and introductions, they also provide a set of options for title design. This study attempts to identify the title conventions of eight disciplines by focusing on various features that play a part in title design: the use of multiple-unit titles (those with subtitles); the use of noun phrases to form the title; and âaâ or âtheâ in initial position. The length of titles is investigated, as is the proportion of substantive words. Data is based on a 3,200-title corpus of titles from research articles published in prestigious journals in four disciplines in the hard sciences (botany, fluid engineering, geology, and medicine) and four in the soft sciences (economics, education, history, and sociology). The data is presented in a visual form that compares title features by discipline, to demonstrate title conventions and to help novice writers understand the features and options available
MACiE: a database of enzyme reaction mechanisms.
SUMMARY: MACiE (mechanism, annotation and classification in enzymes) is a publicly available web-based database, held in CMLReact (an XML application), that aims to help our understanding of the evolution of enzyme catalytic mechanisms and also to create a classification system which reflects the actual chemical mechanism (catalytic steps) of an enzyme reaction, not only the overall reaction. AVAILABILITY: http://www-mitchell.ch.cam.ac.uk/macie/.EPSRC (G.L.H. and J.B.O.M.), the BBSRC (G.J.B. and J.M.T.âCASE studentship in association with Roche Products Ltd; N.M.O.B. and J.B.O.M.âgrant BB/C51320X/1), the Chilean Governmentâs Ministerio de PlanificacioÂŽn y CooperacioÂŽn and
Cambridge Overseas Trust (D.E.A.) for funding and Unilever for supporting the Centre for Molecular Science Informatics.application note restricted to 2 printed pages web site: http://www-mitchell.ch.cam.ac.uk/macie
Ladder approximation to spin velocities in quantum wires
The spin sector of charge-spin separated single mode quantum wires is
studied, accounting for realistic microscopic electron-electron interactions.
We utilize the ladder approximation (LA) to the interaction vertex and exploit
thermodynamic relations to obtain spin velocities. Down to not too small
carrier densities our results compare well with existing quantum Monte-Carlo
(QMC) data. Analyzing second order diagrams we identify logarithmically
divergent contributions as crucial which the LA includes but which are missed,
for example, by the self-consistent Hartree-Fock approximation. Contrary to
other approximations the LA yields a non-trivial spin conductance. Its
considerably smaller computational effort compared to numerically exact
methods, such as the QMC method, enables us to study overall dependences on
interaction parameters. We identify the short distance part of the interaction
to govern spin sector properties.Comment: 6 pages, 6 figures, to appear in Physical Review
Mass Composition of Cosmic Rays in the Range 2 x 10^17 - 3 x 10^18 Measured with Haverah Park Array
At the Haverah Park Array a number of air shower observables were measured
that are relevant to the determination of the mass composition of cosmic rays.
In this paper we discuss measurements of the risetime of signals in large area
water-Cherenkov detectors and of the lateral distribution function of the
water-Cherenkov signal. The former are used to demonstrate that the CORSIKA
code, using the QGSJET98 model, gives an adequate description of the data with
a low sensitivity, in this energy range, to assumptions about primary mass. By
contrast the lateral distribution is sufficiently well measured that there is
mass sensitivity. We argue that in the range 0.2-1.0 EeV the data are well
represented with a bi-modal composition of 34+-2 % protons and the rest iron.
We also discuss the systematic errors induced by the choice of hadronic model.Comment: 16 pages, 13 figures. Accepted for publication in Astroparticle
Physic
Pair distribution function in a two-dimensional electron gas
We calculate the pair distribution function, , in a two-dimensional
electron gas and derive a simple analytical expression for its value at the
origin as a function of . Our approach is based on solving the
Schr\"{o}dinger equation for the two-electron wave function in an appropriate
effective potential, leading to results that are in good agreement with Quantum
Monte Carlo data and with the most recent numerical calculations of . [C.
Bulutay and B. Tanatar, Phys. Rev. B {\bf 65}, 195116 (2002)] We also show that
the spin-up spin-down correlation function at the origin, , is mainly independent of the degree of spin polarization of
the electronic system.Comment: 5 figures, pair distribution dependence with distance is calculate
Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments
Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects
(HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure
extensive air showers (EAS). The precise knowledge of the Fluorescence Light
Yield (FLY) is of paramount importance for the reconstruction of UHECR. The
MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment
has been designed to perform such FLY measurements. In this paper we will
present the results of FLY in the 290-440 nm wavelength range for dry air and
pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50
GeV. The experiment uses a 90Sr radioactive source for low energy measurement
and a CERN SPS electron beam for high energy. We find that the FLY is
proportional to the deposited energy (E_d) in the gas and we show that the air
fluorescence properties remain constant independently of the electron energy.
At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio
FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle
Physic
Determination of the longitudinal structure function at HERA
Recent results from the HERA experiment H1 on the longitudinal stucture
function of the proton are presented. They include proton structure
function analyses with particular emphasis on those kinematic regions which are
sensitive to . All results can be consistently described within the
framework of perturbative QCD.Comment: 16 pages, 11 figures (requires iopart, iopams and epsfig); Talk
presented in the Intern. Workshop on New Trends in HERA Physics 2001, 17-22
June 2001, Ringberg Castle, Tegernsee, Germany; To appear in the Proceeding
A semi-classical over-barrier model for charge exchange between highly charged ions and one-optical electron atoms
Absolute total cross sections for electron capture between slow, highly
charged ions and alkali targets have been recently measured. It is found that
these cross sections follow a scaling law with the projectile charge which is
different from the one previously proposed basing on a classical over-barrier
model (OBM) and verified using rare gases and molecules as targets. In this
paper we develop a "semi-classical" (i.e. including some quantal features) OBM
attempting to recover experimental results. The method is then applied to
ion-hydrogen collisions and compared with the result of a sophisticated
quantum-mechanical calculation. In the former case the accordance is very good,
while in the latter one no so satisfactory results are found. A qualitative
explanation for the discrepancies is attempted.Comment: RevTeX, uses epsf; 6 pages text + 3 EPS figures Journal of Physics B
(scehduled March 2000). This revision corrects fig.
Dijet production as a centrality trigger for p-p collisions at CERN LHC
We demonstrate that a trigger on hard dijet production at small rapidities
allows to establish a quantitative distinction between central and peripheral
collisions in pbar-p and p-p collisions at Tevatron and LHC energies. Such a
trigger strongly reduces the effective impact parameters as compared to minimum
bias events. This happens because the transverse spatial distribution of hard
partons (x >~ 10^{-2}) in the proton is considerably narrower than that of soft
partons, whose collisions dominate the total cross section. In the central
collisions selected by the trigger, most of the partons with x >~ 10^{-2}
interact with a gluon field whose strength rapidly increases with energy. At
LHC (and to some extent already at Tevatron) energies the strength of this
interaction approaches the unitarity ('black-body') limit. This leads to
specific modifications of the final state, such as a higher probability of
multijet events at small rapidities, a strong increase of the transverse
momenta and depletion of the longitudinal momenta at large rapidities, and the
appearance of long-range correlations in rapidity between the forward/backward
fragmentation regions. The same pattern is expected for events with production
of new heavy particles (Higgs, SUSY). Studies of these phenomena would be
feasible with the CMS-TOTEM detector setup, and would have considerable impact
on the exploration of the physics of strong gluon fields in QCD, as well as the
search for new particles at LHC.Comment: 17 pages, Revtex 4, 14 EPS figures. Expanded discussion of some
points, added 3 new figures and new references. Included comment on
connection with cosmic ray physics near the GZK cutoff. To appear in Phys Rev
Recommended from our members
Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts
We have hypothesized that T cell cytokines participate in the pathogenesis of graft arterial disease (GAD). This study tested the consequences of IFN-gamma deficiency on arterial and parenchymal pathology in murine cardiac allografts. Hearts from C-H-2(bm12)KhEg (bm12, H-2(bm12)) were transplanted into C57/B6 (B6, H-2(b)), wild-type, or B6 IFN-gamma-deficient (GKO) recipients after immunosuppression by treatment with anti-CD4 and anti-CD8 mAbs. In wild-type recipients, myocardial rejection peaked at 4 wk, (grade 2. 1+/-0.3 out of 4, mean+/-SEM, n = 9), and by 8-12 wk evolved coronary arteriopathy. At 12 wk, the GAD score was 1.4+/-0.3, and the parenchymal rejection grade was 1.2+/-0.3 (n = 8). In GKO recipients of bm12 allografts, myocardial rejection persisted at 12 wk (grade 2.5+/-0.3, n = 6), but no GAD developed (score: 0.0+/-0.0, n = 6, P < 0.01 vs. wild-type). Mice treated with anti-IFN-gamma mAbs showed similar results. Isografts generally showed no arterial changes. In wild-type recipients, arterial and parenchymal cells showed increased MHC class II molecules, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 compared to normal or isografted hearts. The allografts in GKO recipients showed attenuated expression of these molecules (n = 6). Thus, development of GAD, but not parenchymal rejection, requires IFN-gamma. Reduced expression of MHC antigens and leukocyte adhesion molecules may contribute to the lack of coronary arteriopathy in hearts allografted into GKO mice
- âŠ