64 research outputs found

    Synthesis of Spin-Labelled Bergamottin: A Potent CYP3A4 Inhibitor with Antiproliferative Activity

    Get PDF
    Bergamottin (BM, 1), a component of grapefruit juice, acts as an inhibitor of some isoforms of the cytochrome P450 (CYP) enzyme, particularly CYP3A4. Herein, a new bergamottin containing a nitroxide moiety (SL-bergamottin, SL-BM, 10) was synthesized; chemically characterized, evaluated as a potential inhibitor of the CYP2C19, CYP3A4, and CYP2C9 enzymes; and compared to BM and known inhibitors such as ketoconazole (KET) (3A4), warfarin (WAR) (2C9), and ticlopidine (TIC) (2C19). The antitumor activity of the new SL-bergamottin was also investigated. Among the compounds studied, BM showed the strongest inhibition of the CYP2C9 and 2C19 enzymes. SL-BM is a more potent inhibitor of CYP3A4 than the parent compound; this finding was also supported by docking studies, suggesting that the binding positions of BM and SL-BM to the active site of CYP3A4 are very similar, but that SL-BM had a better ∆Gbind value than that of BM. The nitroxide moiety markedly increased the antitumor activity of BM toward HeLa cells and marginally increased its toxicity toward a normal cell line. In conclusion, modification of the geranyl sidechain of BM can result in new CYP3A4 enzyme inhibitors with strong antitumor effects

    HIF-transcribed p53 chaperones HIF-1α

    Get PDF
    Chronic hypoxia is associated with a variety of physiological conditions such as rheumatoid arthritis, ischemia/reperfusion injury, stroke, diabetic vasculopathy, epilepsy and cancer. At the molecular level, hypoxia manifests its effects via activation of HIF-dependent transcription. On the other hand, an important transcription factor p53, which controls a myriad of biological functions, is rendered transcriptionally inactive under hypoxic conditions. p53 and HIF-1α are known to share a mysterious relationship and play an ambiguous role in the regulation of hypoxia-induced cellular changes. Here we demonstrate a novel pathway where HIF-1α transcriptionally upregulates both WT and MT p53 by binding to five response elements in p53 promoter. In hypoxic cells, this HIF-1α-induced p53 is transcriptionally inefficient but is abundantly available for protein-protein interactions. Further, both WT and MT p53 proteins bind and chaperone HIF-1α to stabilize its binding at its downstream DNA response elements. This p53-induced chaperoning of HIF-1α increases synthesis of HIF-regulated genes and thus the efficiency of hypoxia-induced molecular changes. This basic biology finding has important implications not only in the design of anti-cancer strategies but also for other physiological conditions where hypoxia results in disease manifestation

    The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53

    Get PDF
    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Eculizumab improves fatigue in refractory generalized myasthenia gravis

    Get PDF

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51

    Get PDF
    In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy

    固形腫瘍の再酸素化における一酸化窒素の役割とその生成機構

    No full text
    corecore