38 research outputs found

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    15パズルとMathematica

    No full text

    Neutron Imaging Using a Fine-Grained Nuclear Emulsion

    No full text
    A neutron detector using a fine-grained nuclear emulsion has a sub-micron spatial resolution and thus has potential to be applied as high-resolution neutron imaging. In this paper, we present two approaches to applying the emulsion detectors for neutron imaging. One is using a track analysis to derive the reaction points for high resolution. From an image obtained with a 9 μm pitch Gd grating with cold neutrons, periodic peak with a standard deviation of 1.3 μm was observed. The other is an approach without a track analysis for high-density irradiation. An internal structure of a crystal oscillator chip, with a scale of approximately 30 μm, was able to be observed after an image analysis

    A Novel Nuclear Emulsion Detector for Measurement of Quantum States of Ultracold Neutrons in the Earth's Gravitational Field

    Full text link
    Hypothetical short-range interactions could be detected by measuring the wavefunctions of ultracold neutrons (UCNs) on a mirror bounded by the Earth's gravitational field. The Searches require detectors with higher spatial resolution. We are developing a UCN detector for the with a high spatial resolution, which consists of a Si substrate, a thin converter layer including 10^{10}B4_{4}C, and a layer of fine-grained nuclear emulsion. Its resolution was estimated to be less than 100 nm by fitting tracks of either 7^{7}Li nuclei or α\alpha-particles, which were created when neutrons interacted with the 10^{10}B4_{4}C layer. For actual measurements of the spatial distributions, the following two improvements were made: The first was to establish a method to align microscopic images with high accuracy within a wide region of 65 mm ×\times 0.2 mm. We created reference marks of 1 μ\mum and 5 μ\mum diameter with an interval of 50 μ\mum and 500 μ\mum, respectively, on the Si substrate by electron beam lithography and realized a position accuracy of less than 30 nm. The second was to build a holder that could maintain the atmospheric pressure around the nuclear emulsion to utilize it under vacuum during exposure to UCNs. The intrinsic resolution of the improved detector was estimated by evaluating the blur of a transmission image of a gadolinium grating taken by cold neutrons as better than 0.56 ±\pm 0.08 μ\mum, which included the grating accuracy. A test exposure to UCNs was conducted to obtain the spatial distribution of UCNs in the Earth's gravitational field. Although the test was successful, a blurring of 6.9 μ\mum was found in the measurements, compared with a theoretical curve. We identified the blurring caused by the refraction of UCNs due to the roughness of the upstream surface of the substrate. Polishing of the surface makes the resolution less than 100 nm

    Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    No full text
    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV=u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z 1?4 6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

    Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015)

    No full text
    Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion) experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015
    corecore