142 research outputs found

    Effect of Vorapaxar Alone and in Combination with Aspirin on Bleeding Time and Platelet Aggregation in Healthy Adult Subjects.

    Get PDF
    The effect of the protease-activated receptor-1 (PAR-1) antagonist vorapaxar on human bleeding time is not known. This was a randomized, two-period, open-label trial in healthy men (n = 31) and women (n = 5). In period 1, subjects received 81 mg aspirin q.d. or a vorapaxar regimen achieving steady-state plasma concentrations equivalent to chronic 2.5 mg q.d. doses, for 7 days. In period 2, each group added 7 days of the therapy alternate to that of period 1 without washout. Bleeding time and platelet aggregation using arachidonic acid, ADP, and TRAP agonists were assessed. Bleeding time geometric mean ratio (90% CI) for vorapaxar/baseline was 1.01 (0.88-1.15), aspirin/baseline was 1.32 (1.15-1.51), vorapaxar + aspirin/vorapaxar was 1.47 (1.26-1.70), and vorapaxar + aspirin/aspirin was 1.12 (0.96-1.30). Unlike aspirin, vorapaxar did not prolong bleeding time compared with baseline. Bleeding time following administration of vorapaxar with aspirin was similar to that following aspirin alone

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    Genotoxicants Target Distinct Molecular Networks in Neonatal Neurons

    Get PDF
    BACKGROUND: Exposure of the brain to environmental agents during critical periods of neuronal development is considered a key factor underlying many neurologic disorders. OBJECTIVES: In this study we examined the influence of genotoxicants on cerebellar function during early development by measuring global gene expression changes. METHODS: We measured global gene expression in immature cerebellar neurons (i.e., granule cells) after treatment with two distinct alkylating agents, methylazoxymethanol (MAM) and nitrogen mustard (HN2). Granule cell cultures were treated for 24 hr with MAM (10–1,000 μM) or HN2 (0.1–20 μM) and examined for cell viability, DNA damage, and markers of apoptosis. RESULTS: Neuronal viability was significantly reduced (p < 0.01) at concentrations > 500 μM for MAM and > 1.0 μM for HN2; this correlated with an increase in both DNA damage and markers of apoptosis. Neuronal cultures treated with sublethal concentrations of MAM (100 μM) or HN2 (1.0 μM) were then examined for gene expression using large-scale mouse cDNA microarrays (27,648). Gene expression results revealed that a) global gene expression was predominantly up-regulated by both genotoxicants; b) the number of down-regulated genes was approximately 3-fold greater for HN2 than for MAM; and c) distinct classes of molecules were influenced by MAM (i.e, neuronal differentiation, the stress and immune response, and signal transduction) and HN2 (i.e, protein synthesis and apoptosis). CONCLUSIONS: These studies demonstrate that individual genotoxicants induce distinct gene expression signatures. Further study of these molecular networks may explain the variable response of the developing brain to different types of environmental genotoxicants

    2D-DIGE as a strategy to identify serum biomarkers in Mexican patients with Type-2 diabetes with different body mass index

    Get PDF
    "Obesity and type 2 diabetes (T2D) are the most prevalent and serious metabolic diseases affecting people worldwide. However racial and ethnic disparities seems to be a risk factor for their development. Mexico has been named as one of the largest populations with the highest prevalence of diabetes and obesity. The aim of this study was to identify novel T2D-associated proteins in Mexican patients. Blood samples were collected from 62 Mexican patients with T2D and they were grouped according to their body mass index (BMI). A panel of 10 diabetes and obesity serum markers was determined using MAGPIX. A comparative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry (LC-MS/MS). We detected 113 spots differentially accumulated, in which 64 unique proteins were identified, proteins that were involved in metabolism pathways, molecular transport, and cellular signalling. Four proteins (14-3-3, ApoH, ZAG, and OTO3) showing diabetes-related variation and also changes in relation to obesity were selected for further validation by western blotting. Our results reveal new diabetes related proteins present in the Mexican population. These could provide additional insight into the understanding of diabetes development in Mexican population and may also be useful candidate biomarkers.

    Genome-Wide Maps of Circulating miRNA Biomarkers for Ulcerative Colitis

    Get PDF
    Inflammatory Bowel Disease – comprised of Crohn's Disease and Ulcerative Colitis (UC) - is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis

    The Potential Role of ORM2 in the Development of Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)

    Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)

    Risk factor screening to identify women requiring oral glucose tolerance testing to diagnose gestational diabetes : a systematic review and meta-analysis and analysis of two pregnancy cohorts

    Get PDF
    BACKGROUND: Easily identifiable risk factors including: obesity and ethnicity at high risk of diabetes are commonly used to indicate which women should be offered the oral glucose tolerance test (OGTT) to diagnose gestational diabetes (GDM). Evidence regarding these risk factors is limited however. We conducted a systematic review (SR) and meta-analysis and individual participant data (IPD) analysis to evaluate the performance of risk factors in identifying women with GDM. METHODS: We searched MEDLINE, Medline in Process, Embase, Maternity and Infant Care and the Cochrane Central Register of Controlled Trials (CENTRAL) up to August 2016 and conducted additional reference checking. We included observational, cohort, case-control and cross-sectional studies reporting the performance characteristics of risk factors used to identify women at high risk of GDM. We had access to IPD from the Born in Bradford and Atlantic Diabetes in Pregnancy cohorts, all pregnant women in the two cohorts with data on risk factors and OGTT results were included. RESULTS: Twenty nine published studies with 211,698 women for the SR and a further 14,103 women from two birth cohorts (Born in Bradford and the Atlantic Diabetes in Pregnancy study) for the IPD analysis were included. Six studies assessed the screening performance of guidelines; six examined combinations of risk factors; eight evaluated the number of risk factors and nine examined prediction models or scores. Meta-analysis using data from published studies suggests that irrespective of the method used, risk factors do not identify women with GDM well. Using IPD and combining risk factors to produce the highest sensitivities, results in low specificities (and so higher false positives). Strategies that use the risk factors of age (>25 or >30) and BMI (>25 or 30) perform as well as other strategies with additional risk factors included. CONCLUSIONS: Risk factor screening methods are poor predictors of which pregnant women will be diagnosed with GDM. A simple approach of offering an OGTT to women 25 years or older and/or with a BMI of 25kg/m2 or more is as good as more complex risk prediction models. Research to identify more accurate (bio)markers is needed. Systematic Review Registration: PROSPERO CRD42013004608
    corecore