21 research outputs found

    Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 mu b(-1) and 38 mu b(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar < 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Differential Regulation of E2F1, DP1, and the E2F1/DP1 Complex by ARF

    No full text
    The tumor suppressor protein ARF inhibits MDM2 to activate and stabilize p53. Recent studies provided evidence for p53-independent tumor suppression functions of ARF. For example, it has been shown that ARF induces proteolysis of certain E2F species, including E2F1. In addition, ARF relocalizes E2F1 from the nucleoplasm to nucleolus and inhibits E2F1-activated transcription. Because DP1 is a functional partner of the E2F family of factors, we investigated whether DP1 is also regulated by ARF. Here we show that DP1 associates with ARF. Coexpression of ARF relocalizes DP1 from the cytoplasm to the nucleolus, suggesting that DP1 is also a target of the ARF regulatory pathways. Surprisingly, however, the E2F1/DP1 complex is refractory to ARF regulation. Coexpression of E2F1 and DP1 blocks ARF-induced relocalization of either subunit to the nucleolus. The E2F1/DP1 complex localizes in the nucleoplasm, whereas ARF is detected in the nucleolus, suggesting that ARF does not interact with the E2F1/DP1 complex. Moreover, we show that E2F1 is more stable in the presence of ARF when coexpressed with DP1. These results suggest that ARF differentially regulates the free and heterodimeric forms of E2F1 and DP1. DP1 is a constitutively expressed protein, whereas E2F1 is mainly expressed at the G(1)/S boundary of the cell cycle. Therefore, the E2F1/DP1 complex is abundant only between late G(1) and early S phase. Our results on the differential regulation E2F1, DP1, and the E2F1/DP1 complex suggest the possibility that ARF regulates the function of these cell cycle factors by altering the dynamics of their heterodimerization during progression from G(1) to S phase

    Mechanistic insights into the oncogenic partnership of hADA3 and HPVE6 - paving ways for improved cervical cancer therapy

    No full text
    651-658High risk Human Papillomavirus (HPV) is considered the primary causative agent of cervical cancer, a deva`stating malady with significant morbidity. In India, cervical cancer is one of the major reasons of cancer mortality among women. Poor treatment outcomes of this disease is a matter of grave concern and hence demands aggressive research efforts towards discovery of more effective therapies. Understanding the intricacies of HPV oncogenesis at the molecular level can facilitate the discovery of promising anti-viral drugs. Our research aims at catering to the need of the time by revealing some of the key molecular mechanisms that contributes to HPV oncogenesis that can be utilized to discover promising anti-cancer molecules. We delineated the oncogenic connections between hADA3 and HPVE6 and illustrated its critical role in cellular transformation. Our work also shows how HPV oncoproteins exploits the cellular SUMO machinery to downregulate hADA3 to induce malignancy. This intrigued us to identify the hot spots of hADA3-E6 interaction and design therapeutic peptides against HPV induced cervical cancer. Present review is an attempt to outline our research on novel mechanisms of HPV pathogenesis and its implication on development of improved cervical cancer therapies

    Colocynth Extracts Prevent Epithelial to Mesenchymal Transition and Stemness of Breast Cancer Cells

    No full text
    Modern treatment strategies provide better overall survival in cancer patients, primarily by controlling tumor growth. However, off-target and systemic toxicity, tumor recurrence, and resistance to therapy are still inadvertent hurdles in current treatment regimens. Similarly, metastasis is another deadly threat to patients suffering from cancer. This has created an urgent demand to come up with new drugs having anti-metastatic potential and minimum side effects. Thus, this study was aimed at exploring the anti-proliferative and anti-metastatic potential of colocynth medicinal plant. Results from MTT assay, morphological visualization of cells and scratch assay indicated a role of ethanol and acetone extracts of fruit pulp of the colocynth plant in inhibiting cell viability, enhancing cell cytotoxicity and preventing cell migration in various cancer cell types, including breast cancer cell lines MCF-7 and MDA-MB-231, and cervical cancer cell line SiHa, subsequently having a low cytotoxic effect on mononuclear PBMC and macrophage J774A cells. Our study in metastatic MDA-MB-231 cells showed that both ethanol and acetone pulp extracts decreased transcript levels of the anti-apoptotic genes BCL2 and BCLXL, and a reverse effect was observed for the pro-apoptotic genes BAX and caspase 3. Additionally, enhanced caspase 3 activity and downregulated BCL2 protein were seen, indicating a role of these extracts in inducing apoptotic activity. Moreover, MDA-MB-231 cells treated with both these extracts demonstrated up-regulation of the epithelial gene keratin 19 and down-regulation of the mesenchymal genes, vimentin, N-cadherin, Zeb1 and Zeb2 compared to control, suggesting a suppressive impact of these extracts in epithelial to mesenchymal transition (EMT). In addition, these extracts inhibited colony and sphere formation with simultaneous reduction in the transcript level of the stemness associated genes, BMI-1 and CD44. It was also found that both the plant extracts exhibited synergistic potential with the chemotherapeutic drug doxorubicin to inhibit cancer viability. Furthermore, GC-MS/MS analysis revealed the presence of certain novel compounds in both the extracts that are responsible for the anti-cancer role of the extracts. Overall, the results of this report suggest, for the first time, that colocynth fruit pulp extracts may block the proliferative as well as metastatic activity of breast cancer cells

    Phe28<sup>B10</sup> Induces Channel-Forming Cytotoxic Amyloid Fibrillation in Human Neuroglobin, the Brain-Specific Hemoglobin

    No full text
    Since its discovery, neuroglobin (Ngb), a neuron-specific oxygen binding hemoglobin, distinct from the classical myoglobin and blood hemoglobin, has attracted attention as an endogenous neuroprotectant. Recent reports suggest that Ngb protects neurons from brain stroke, ischemic stress-induced degeneration, and other brain disorders. Proteins with a specific role in neuroprotection are often associated with neurodegeneration, as well, depending on the cellular environment or specific cellular triggers that tilt the balance one way or the other. This investigation explored the potential role of Ngb in amyloid fibril-related neuronal disorder. Ngb was capable of amyloid formation <i>in vitro</i> at neutral pH and ambient temperature, in both apo and holo forms, albeit at a slower rate in the holo form, unlike other hemoglobins that exhibit such behavior exclusively in the apo states. Elevated temperature enhanced the rate of fibril formation significantly. The B-helix, which is known to play a major role in Ngb ligand binding kinetics, was found to be amyloidogenic with the Phe28<sup>B10</sup> amino acid side chain as the key inducer of fibrillation. The Ngb amyloid fibril was also significantly cytotoxic to neuroblastoma cell lines, compared to those obtained from reference hemoglobins. The Ngb fibril probably promoted toxicity by inducing channel formation in the cell membrane, as investigated here using synthetic lipid bilayer membranes and the propidium iodide uptake assay. These findings imply that Ngb plays a role in neurodegenerative disorders <i>in vivo</i>, for which there seems to be indirect evidence by association. Ngb thus presents a novel prospect for understanding amyloid-related brain disorders beyond the limited set of proteins currently investigated for such diseases
    corecore