56 research outputs found

    High-permeability region size on perfusion CT predicts hemorrhagic transformation after intravenous thrombolysis in stroke

    Get PDF
    Objective. Blood-brain barrier (BBB) permeability has been proposed as a predictor of hemorrhagic transformation (HT) after tissue plasminogen activator (tPA) administration; however, the reliability of perfusion computed tomography (PCT) permeability imaging for predicting HT is uncertain. We aimed to determine the performance of high-permeability region size on PCT (HPrs- PCT) in predicting HT after intravenous tPA administration in patients with acute stroke. Methods. We performed a multimodal CT protocol (non-contrast CT, PCT, CT angiography) to prospectively study patients with middle cerebral artery occlusion treated with tPA within 4.5 hours of symptom onset. HT was graded at 24 hours using the European-Australasian Acute Stroke Study II criteria. ROC curves selected optimal volume threshold, and multivariate logistic regression analysis identified predictors of HT. Results. The study included 156 patients (50% male, median age 75.5 years). Thirty-seven (23,7%) developed HT [12 (7,7%), parenchymal hematoma type 2 (PH-2)]. At admission, patients with HT had lower platelet values, higher NIHSS scores, increased ischemic lesion volumes,larger HPrs-PCT, and poorer collateral status. The negative predictive value of HPrs-PCT at a threshold of 7mL/100g/min was 0.84 for HT and 0.93 for PH-2. The multiple regression analysis selected HPrs-PCT at 7mL/100g/min combined with platelets and baseline NIHSS score as the best model for predicting HT (AUC 0.77). HPrs-PCT at 7mL/100g/min was the only independent predictor of PH-2 (OR 1, AUC 0.68, p = 0.045). Conclusions. HPrs-PCT can help predict HT after tPA, and is particularly useful in identifying patients at low risk of developing HT

    Impact of e-ASPECTS software on the performance of physicians compared to a consensus ground truth: a multi-reader, multi-case study

    Get PDF
    BackgroundThe Alberta Stroke Program Early CT Score (ASPECTS) is used to quantify the extent of injury to the brain following acute ischemic stroke (AIS) and to inform treatment decisions. The e-ASPECTS software uses artificial intelligence methods to automatically process non-contrast CT (NCCT) brain scans from patients with AIS affecting the middle cerebral artery (MCA) territory and generate an ASPECTS. This study aimed to evaluate the impact of e-ASPECTS (Brainomix, Oxford, UK) on the performance of US physicians compared to a consensus ground truth.MethodsThe study used a multi-reader, multi-case design. A total of 10 US board-certified physicians (neurologists and neuroradiologists) scored 54 NCCT brain scans of patients with AIS affecting the MCA territory. Each reader scored each scan on two occasions: once with and once without reference to the e-ASPECTS software, in random order. Agreement with a reference standard (expert consensus read with reference to follow-up imaging) was evaluated with and without software support.ResultsA comparison of the area under the curve (AUC) for each reader showed a significant improvement from 0.81 to 0.83 (p = 0.028) with the support of the e-ASPECTS tool. The agreement of reader ASPECTS scoring with the reference standard was improved with e-ASPECTS compared to unassisted reading of scans: Cohen's kappa improved from 0.60 to 0.65, and the case-based weighted Kappa improved from 0.70 to 0.81.ConclusionDecision support with the e-ASPECTS software significantly improves the accuracy of ASPECTS scoring, even by expert US neurologists and neuroradiologists

    MAGPI: A framework for maximum likelihood MR phase imaging using multiple receive coils.

    No full text
    PURPOSE: Combining MR phase images from multiple receive coils is a challenging problem, complicated by ambiguities introduced by phase wrapping, noise, and the unknown phase-offset between the coils. Various techniques have been proposed to mitigate the effect of these ambiguities but most of the existing methods require additional reference scans and/or use ad hoc post-processing techniques that do not guarantee any optimality. THEORY AND METHODS: Here, the phase estimation problem is formulated rigorously using a maximum-likelihood (ML) approach. The proposed framework jointly designs the acquisition-processing chain: the optimized pulse sequence is a single multiecho gradient echo scan and the corresponding postprocessing algorithm is a voxel-per-voxel ML estimator of the underlying tissue phase. RESULTS: Our proposed framework (Maximum AmbiGuity distance for Phase Imaging, MAGPI) achieves substantial improvements in the phase estimate, resulting in phase signal-to-noise ratio (SNR) gains by up to an order of magnitude compared to existing methods. CONCLUSION: The advantages of MAGPI are: (1) ML-optimal combination of phase data from multiple receive coils, without a reference scan; (2) voxel-per-voxel ML-optimal estimation of the underlying tissue phase, without the need for phase unwrapping or image smoothing; and (3) robust dynamic estimation of channel-dependent phase-offsets

    Spine Oncology: Imaging and Intervention

    No full text
    Osseous metastases are the most common spine tumor and increasingly prevalent as advances in cancer treatments allow patients to live longer with their disease. Evidence-based algorithms derive the majority of their data from imaging studies and reports; the radiologist should understand the most current treatments and report in the language of the treatment team for efficient and effective communication and patient care. Advanced imaging techniques such as diffusion-weighted imaging and dynamic contrast-enhanced MRI are increasingly used for diagnosis and problem solving. Radiologists have a growing role in treatment of patients with metastatic disease, performing cement augmentation and tumor ablation
    • …
    corecore